Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 88))

  • 516 Accesses

Abstract

In the classical analyses of both Brownian (perikinetic) and velocity gradient (orthokinetic) flocculation by Smoluchowski1, particle encounters in sufficiently dilute systems are treated as binary collisions between rigid spheres. In these analyses it is assumed that the relative ¡notions between particle pairs can be described by superposition of the isolated particle motions, each particle behaving as though the others were not present. With this assumption the only permitted interactions are those of the external force fields resulting from combined attraction and repulsion. According to the far-reaching DLVO theory, the field forces are a consequence of London-van der Waals attraction and electrical double layer repulsion2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lavich, V. G., Physicochemical Hydrodynamics, Ch. V, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962.

    Google Scholar 

  2. Verwey, J. W., Overbeek, J. Th. G., Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 1948.

    Google Scholar 

  3. Stimson, M., Jeffery, G. B., The notion of two spheres in a viscous fluid, Proc. Roy. Soc., A111, 110, 1926.

    Article  Google Scholar 

  4. Lin, C. J., Lee, K. J., Sather, N. F., Slow motion of two spheres in a shear field, J. Fluid Mech., 43, 35, 1970.

    Article  Google Scholar 

  5. Batchelor, G. K., Green, J. T., The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, J. Fluid Mech., 56, 375, 1972.

    Article  Google Scholar 

  6. Ceryagin, B. v., Muller, V. M., Slow coagulation of hydrophobic colloids, Doklady Akadamii Nauk SSSR, (Engl, transl.), 176, 869, 1967.

    Google Scholar 

  7. Spielman, L. A., Viscous interactions in Brownian coagulation, J. Colloid Interface Sci., 33, 562, 1970.

    Article  CAS  Google Scholar 

  8. Honig, E. P., Roebersen, G. J., Wiersema, P. H., Effect of hydrodynamic interaction on the coagulation rate of hydrophobic colloids, J. Colloid Interface Sci., 36, 97, 1971.

    Article  CAS  Google Scholar 

  9. Fuchs, N. A., The Mechanics of Aerosols, p. 305, Pergamon Press, The MacMillan Co., New York, 1964.

    Google Scholar 

  10. Curtis, A. S. G., Hocking, L. M., Collision efficiency of equal spherical particles in a shear flow. Trans. Far. Soc., 66, 1381, 1970.

    Article  CAS  Google Scholar 

  11. van de Ven, T. G. M., Mason, S. G., The microrheology of colloidal dispersions IV. Pairs of interacting spheres in shear flow, J. Colloid Interface Sci., 57, 505, 1976.

    Google Scholar 

  12. van de Ven, T. G. M., Mason, S. G., The microrheology of colloidal dispersions V. Primary and secondary doublets of spheres in shear flow, J. Colloid Interface Sci., 57, 517, 1976.

    Google Scholar 

  13. van de Ven, T.G.M., Mason, S.G., The microrheology of colloidal dispersions VI. Chains of spheres in shear flow, J. Colloid Interface Sci., 57, 535, 1976.

    Google Scholar 

  14. van de Ven, T. G. M., Mason, S. G., The microrheology of colloidal dispersions VII. Orthokinetic doublet formation of spheres, Colloid and Polymer Sci., in press, 1977.

    Google Scholar 

  15. van do Ven, T. G. M., Mason, S. G., The microrheology of colloidal dispersions VIII. Effect of shear on perikinetic doublet formation. Colloid and Polymer Sci., in press, 1977.

    Google Scholar 

  16. Schenkel, J. M.f Kitchener, J. A., A test of the Derjaguin- Landau-Verwey-Overbeek theory with a colloid suspension. Trans. Far. Soc., 56, 161, 1960.

    Google Scholar 

  17. Friedlander, S. K., Smoke, Dust and Haze, p. 190, Miley-Interscience, New York, 1977.

    Google Scholar 

  18. Wolynes, P. G., McCammon J. A., Hydrodynamic effect on the coagulation of porous biopolyraers, Macromolecules, 10, 86, 1977.

    Article  CAS  Google Scholar 

  19. Batchelor, G. K., The Theory of Homogeneous Turbulence, Cambridge Univ. Press, Cambridge, England, 1958.

    Google Scholar 

  20. Saffman, P. G., Turner, J. S., On the collision of drops in turbulent clouds, J. Fluid Mech., 1, 16, 19S6.

    Google Scholar 

  21. Taylor, G. I., Statistical theory of turbulence, Part3 I-IV, Proc. Roy. Soc., A151, 421, 193S.

    Google Scholar 

  22. Camp, T. R. and Stein, P. C., Velocity gradients and internal work in fluid motion, J. Boston Soc. Civ. Eng., 30, 219, 1943.

    Google Scholar 

  23. Delichatsios, M. A., Probstein, R. F., Coagulation in turbulent flow: Theory and experiment, J. Colloid Interface Sci., 51, 394, 1975.

    Article  Google Scholar 

  24. McCabe, W. L., Smith, J. C., Unit Operations of Chemical Engineering, Ch. 6, McGraw-Hill, Inc., New York, 1956.

    Google Scholar 

  25. Fair, G. M., Gemmel, R. S., A mathematical model of coagulation, J. Coll. Sci., 19, 360, 1964.

    Article  Google Scholar 

  26. Ives, K. J., Bhole, A. G., Theory of flocculation for continuous flow system, J. Env. Eng. Div., Proc. Amor. Soc. Civ. Engrs., 99, EE1, 17, 1973.

    Google Scholar 

  27. Argaman, Y., Kaufman, W. J., Turbulence and Flocculation, J. San. Eng. Div., Proc. Amer. Soc. Civ. Engrs., 96, SA2, 223, 1970.

    Google Scholar 

  28. Parker, D. S., Kaufman, W. J., Jenkins, D., Floe breakup in turbulent flocculation processes, J. San. Eng. Div., Proc. Amer. Soc. Civ. Engrs., 98, SA1, 79, 1972.

    Google Scholar 

  29. Kao, S. V., Mason, S. G., Dispersion of particles by shear. Nature. 253, 619, 1975.

    Article  CAS  Google Scholar 

  30. Quigley, J. E., Strength Properties of Liquid-Some Flocculated Matter, M. S. Thesis, Univ. of Delaware, Newark, Delaware, 1977.

    Google Scholar 

  31. Quigley, J. E., Spielman, L. A., Strength Properties of Liquid Borne Flocs, Motion picture, Project No. A-036-DEL Water Resources Center, Univ. of Delaware, Newark, Delaware, 1977.

    Google Scholar 

  32. Valentas, K. J., Amundson, N. R., Breakage and coalescence in dispersed phase systems, Ind. Eng. Chem Fund., 5, 533, 1966.

    Article  CAS  Google Scholar 

  33. Valentas, K. J., Bilous, O., Amundson, M. R., Analysis of breakage in dispersed phase systems, Ind. Eng. Chem. Fund., 5, 271, 1966.

    Article  CAS  Google Scholar 

  34. Friedlander, S. K., Smoke, Dust and Haze, p. 194, Wiley-Interscience, New York, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Spielman, L.A. (1985). Hydrodynamic Aspects of Flocculation. In: Rushton, A. (eds) Mathematical Models and Design Methods in Solid-Liquid Separation. NATO ASI Series, vol 88. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5091-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5091-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8751-3

  • Online ISBN: 978-94-009-5091-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics