Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 88))

Abstract

The object of deep bed filtration is to clarify suspensions, usually of low concentration (typically less than 50 mg/l, but occasionally as high as 500 mg/l) to produce an acceptable liquid filtrate. This is accomplished by passing the suspension through a deep layer (usually between 0.5 m and 2.0 m thick) of fine granular material, typically sand. The suspension particles are retained on the surfaces of the sand grains, within the depth of the filter, and a progressively (with depth) clarified suspension finally emerges as the filtrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Payatakes, A.C., Tien, C., Turian, R.M., A new model for granular porous media: I. Model formulation, Amer. Inst. Chem. Engrs. J., 19, 58, 1973. II Hiaierical solution of steady state incompressible Newtonian flow through periodically constricted tubes, Amer. Inst. Chem. Engrs. J., 19, 67, 1973.

    Google Scholar 

  2. Happel, J., Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles, Amer. Inst. Chem. Engrs. J., 4, 197, 1958.

    CAS  Google Scholar 

  3. Spielman, L.A., FitzPatrick, J.A., Theory of particle collection under London and gravity forces, J. Coll. Interfac. Sci. 42, 607, 1973.

    Article  Google Scholar 

  4. Rajagopalan, R., Tien, C., Trajectory analysis of deep bed filtration using the sphere-in cell porous media model, Amer. Inst. Chem. Engrs. J., 22, 523, 1976.

    CAS  Google Scholar 

  5. Kuwabara, S., The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds Numbers, J. Phys. Soc. Japan., 14, 527, 1959.

    Article  Google Scholar 

  6. Ives, K.J., Capture mechanisms in filtration, in The Scientific Basis of Filtration (ed. K.J. Ives ), Noordhoff International, Leyden, 1975.

    Google Scholar 

  7. Gregory, J., Interfacial phenomena, in The Scientific Basis of Filtration (ed. K.J. Ives ), Noordhoff International, Leyden, 1975.

    Google Scholar 

  8. Spielman, L.A., Hydrodynamic aspects of flocculation, in The Scientific Basis of Flocculation (ed. K.J. Ives ), Sijthoff and Noordhoff, Alphen aan den Rijn, 1978.

    Google Scholar 

  9. Payatakes, A.C., Tien, C., Turian, R.M., Trajectory calculation of particle deposition in deep bed filtration, Amer. Inst. Chem. Engrs. J., 20, 889, 1974.

    CAS  Google Scholar 

  10. O’Melia, C.R., Ali, W., The role of retained particles in deep bed filtration. Prog. Wat. Tech., 10, 167, 1978.

    Google Scholar 

  11. Tien, C., Turian, R.M., Pendse, H., Simulation of the dynamic behaviour of deep bed filters, Amer. Inst. Chem. Engrs. J., 25, 385, 1979.

    CAS  Google Scholar 

  12. Coad, M.A., Ives, K.J., Investigation of deep bed filters using tracers, Filtration Society Conference: Filtration and Separation Equipment for Optimun Results, London, 1981.

    Google Scholar 

  13. Herzig, J.P., Leclerc, D.M., Le Goff, P., Flow of suspensions through porous media, Ind. Eng. Chem., 62, 8, 1970.

    Article  CAS  Google Scholar 

  14. Ives, K.J., Horner, R.M.W., Radial filtration, Proc. Inst. Civ. Engrs. 55, 2, 229, 1973.

    Article  Google Scholar 

  15. Mints, D.M., Kinetics of the filtration of aqueous suspensions of low concentration in water purification filters, Dokl. Akad. Nauk SSSR, 78, 2, 315, 1951. (In Russian).

    Google Scholar 

  16. Ives, K.J., Mathematical models of deep bed filtration,in The Scientific Basis of Filtration (ed. K.J. Ives ), Noordhoff International, Leyden, 1975.

    Google Scholar 

  17. Water filtration - The Mints-Ives Controversy 1960–1973, Filtr. Sep. 13, 2, 131, 1976.

    Google Scholar 

  18. Adin, A., Rebhun, H., A model to predict concentration and head-loss profiles in filtration, J. Amer. Wat. Wks. Ass., 59, 8, 444, 1977.

    Google Scholar 

  19. Ives, K.J., Rational design of filters, Proc. Inst. Civ. Engrs., 16, 189, 1960.

    Article  Google Scholar 

  20. Mackrle, V., Dracka, O., Svec, J., Hydrodynamics of the Disposal of Low Level Liquid Radioactive Wastes in Soil, Inter. Atom. En. Agency Contract Report No. 98, Czech. Acad. Sci. Inst. Hydrodynamics, Prague, 1965.

    Google Scholar 

  21. Diaper, E.W.J., Ives, K.J., Filtration through size-graded media, J. San. Eng. Div., Proc. Am. Soc. Civ. Engrs., 91, SA3, 89, 1965.

    Google Scholar 

  22. Maroudas, A., Eisenklam, P., Clarification of suspensions: a study of particle deposition in porous media, Chem. Eng. Sci., 20, 867, 1965.

    Article  CAS  Google Scholar 

  23. Shekhtman, Yu. K., Filtration of Suspensions of Low Concentration, Publishing House of the USSR Acadcny of Sciences, Moscow, 1961. (In Russian).

    Google Scholar 

  24. Heertjes, P.M., Lerk, C.F., The functioning of deep bed filters, Part II, The filtration of flocculated suspensions, Trans. Inst. Chem. Engrs., 45, T138, 1967.

    CAS  Google Scholar 

  25. Mackrle, V., Mackrle, S., Adhesion in filter beds., Rozprary Cesk Acad. Ved. Rada Tech. Ved, 69, 2, 1959. (In Czech).

    Google Scholar 

  26. Deb., A.K., Theory of sand filtration, J. San. Eng. Div., Proc. Amer. Soc. Civ. Engrs., 95, SA3, 399, 1969.

    Google Scholar 

  27. Litwiniszyn, J., Colmatage considered as a certain stochastic process, Bull. Acad. Pol. Sci., Ser. Sci. Tech., 11, 81, 1963.

    Google Scholar 

  28. Hsiung, K.Y., Cleasby, J.C., Prediction of filter performance, J. San. Eng. Div., Proc. Amer. Soc. Civ. Engrs, 94, SA6, 1043, 1968

    Google Scholar 

  29. Saatci, A., Oulman, C.S., The BDST method for deep bed filtration, Proc. Second World Filtration Congress, London, (p. 193 ), 1979

    Google Scholar 

  30. Ives, K.J., Simulation of filtration on electronic digital computer, J. Amer. Wat. Wks. Ass.. 52, 933, 1960.

    Google Scholar 

  31. Mohanka, S.S., Theory of multilayer filtration, J. San. Eng. Div.. Proc. Amer. Soc. Civ. Engrs., 94, SA6, 1043, 1968.

    Google Scholar 

  32. Mints, D.M., Modern theory of filtration, in International Water Supply Association Seventh Congrens Barcelona. Volume 1, I.W.S.A., Queen Annes Gate, London, 1966.

    Google Scholar 

  33. Ives, K.J., Deep bed filters, in Solid/Liquid Separation Equipment Scale-up (Ed. D.B. Purchas ), Uplands Press, Croydon, 1977.

    Google Scholar 

  34. Ives, K.J., Gur, A., Research on optimisation of filtration, Trib. Cebedeau. 24, 333/334, 377, 1971. (In French).

    Google Scholar 

  35. Sembi, S., Optimization of Size Graded Filters, Ph.D. Thesis, Univ. London, 1981.

    Google Scholar 

  36. Baumann, E.R., Least cost design - optimization of deep bed filters, in The Scientific Basis of Filtration (ed. K.J. Ives ), Noordhoff International, Leyden, 1975.

    Google Scholar 

  37. Cleasby, J.L., Amirtharajah, A., Baumann, E.R., Backwash of granular filters, in The Scientific Basis of Filtration (ed. K.J. Ives ), Noordhoff International, Leyden, 1975.

    Google Scholar 

  38. Amirtharajah, A., Optinua backwashing of sand filters, J. Env. Eng. Div., Proc. Amer. Soc. Civ. Engrs., 104, EE5, 917, 1978.

    Google Scholar 

  39. Cleasby, J.L., Fan, K-S., Predicting fluidization and expansion of filter media, J. Env. Eng. Div., Proc. Amer. Soc. Civ. Engrs., 107, EE3, 1981.

    Google Scholar 

  40. Allanson, J.T., Austin, E.P., Development of a continuous inclined sand bed filter., Filt. Sep. 13, 165, 1976.

    Google Scholar 

  41. Critchard, D.J., Fox, T.M., Green, R., A pilot-plant comparison of the Tenten filter and three conventional static-bed filters for tertiary treatment at the Aldershot sewage-treatment works, Wat. Poll. Contr., 383, 1979.

    Google Scholar 

  42. Flarsson, H., Hjelmer, U., Continuous filtration - a new adaptation of an old technique for water filtration, Kem. Tidskr. 91. 6, 26, 1979. (In Swedish).

    Google Scholar 

  43. Halde, B., Svensson, H., Design of air-lift pumps for continuous sand filters, Chem. Eng. J. 21, 223, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Ives, K.J. (1985). Deep Bed Filters. In: Rushton, A. (eds) Mathematical Models and Design Methods in Solid-Liquid Separation. NATO ASI Series, vol 88. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5091-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5091-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8751-3

  • Online ISBN: 978-94-009-5091-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics