Skip to main content

The Effect of Solute Distribution on Creep Fracture in a Ni Alloy

  • Conference paper
Time-Dependent Fracture

Abstract

Creep cavitation is a heterogeneous process. Thus, cavities coalesce locally to form microcracks long before final fracture. This process has been studied in a Ni-1% Sn alloy whereby macrosegregation of the tin during casting produces an inhomogeneous distribution of cavities and microcracks. The result is an increase in both strength and ductility, as compared to the same alloy with a homogeneous distribution of solute. This is because, while cavities and microcracks form readily in the Sn-rich regions, failure requires the propagation of cracks through regions with low Sn content where the creep ductility is high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perry, A.J., J. of Mater. Sci.9 (1974), 1016.

    Article  ADS  Google Scholar 

  2. Raj, R., Acta Met.26 (1978), 995.

    Article  Google Scholar 

  3. Argon, A.S.,Recent Advances in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds. ( Pinridge Press, 1982 ), 1.

    Google Scholar 

  4. Cocks, A.C.F. and Ashby, M.F., Prog, in Mater. Sci.27 (1982), 189.

    Article  Google Scholar 

  5. Svensson, L.E. and Dunlop, G.L., Int. Met. Rev.26 (1981), 109.

    Google Scholar 

  6. Argon, A.S., Chen, I.W. and Lau, C.W.,Creep-Fatigue-Environment Interactions, R.M. Pelloux and N.S. Stoloff, eds. (Met. Soc. of ALVIE, 1980 ), 46.

    Google Scholar 

  7. Dyson, B.F., (1982), private communication.

    Google Scholar 

  8. Dyson, B.F., Met. Sci. J.10 (1976), 349.

    Article  Google Scholar 

  9. Dyson, B.F., Can. Met. Quart.18 (1979), 31.

    Google Scholar 

  10. Rice, J.R., Acta Met.29 (1981), 675.

    Article  Google Scholar 

  11. Porter, J.R., Blumenthal, W. and Evans, A.G., Acta Met.29 (1981), 1899.

    Article  Google Scholar 

  12. White, C.L. and Padgett, R.A., Scipta Met.16 (1982), 461.

    Article  Google Scholar 

  13. White, C.L., Schneibel, J.H. and Padgett, R.A., Met. Tans.14A (1983), 595.

    Article  Google Scholar 

  14. Ashbv, M.F., Surface Sci.31 (1972), 498.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publisher, Dordrecht

About this paper

Cite this paper

Burger, G., Wilkinson, D.S. (1985). The Effect of Solute Distribution on Creep Fracture in a Ni Alloy. In: Krausz, A.S. (eds) Time-Dependent Fracture. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5085-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5085-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8748-3

  • Online ISBN: 978-94-009-5085-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics