Skip to main content

On the Embrittlement of Niobium by Oxygen

  • Conference paper
Time-Dependent Fracture

Abstract

Oxygen strongly reduces the tensile ductility of niobium between 400 and 1000 K. Because two basically different brittle fracture modes and ductile rupture (microvoid coallescence) are competitive in this range the overall fracture process can be complicated and lead to mixed fracture morphologies. Oxygen concentration, strain rate and temperature are important parameters. The brittle modes are cleavage which requires a high stress level and Troiano slew strain rate embrittlement fracture involving oxygen diffusion and thus favored by slower strain rates and higher temperatures. Dynamic strain aging is important at the lower end of the embrittlement range where it increases the work hardening and raises the stress to the cleavage fracture stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Donoso and R. E. Reed-Hill., Met. Trans. A 7A(1976)961

    Article  Google Scholar 

  2. J.T. Brown and W. M Baldwin, Jr., Trans. AIME 200(1954)298.

    Google Scholar 

  3. A.R. Toriano, Trans. ASM 52(1960)54.

    Google Scholar 

  4. T. W. Wood and R. D. Daniels, TMS AIME 233(1965)898.

    Google Scholar 

  5. D. Hardie and P. Mclntyre, Met. Tran. 4 (1973) 1247.

    Google Scholar 

  6. L. Eustice and 0. N. Carlson, Trans. AIME 221(1961)238.

    Google Scholar 

  7. D. H. Sherman, C. V. Owen and T. E. Scott, TMS AIME 242 (1968) 1775.

    Google Scholar 

  8. G. Imgram, E. S. Bartlett and H. R. Ogden, TMS AIME 227(1963)131.9.

    Google Scholar 

  9. A. H. Windle and G. C. Smith, Met. Sci. J. 4(1970)136.

    Google Scholar 

  10. P. G. Watson, University of Florida, MS Thesis, 1979

    Google Scholar 

  11. B. Houssin, J. F. Fries, C. Cizeron and P. Lacombe, Rev. Phys. Appi. 5(1970)467.

    Google Scholar 

  12. M. Anuchkin, A. K. Volkov, V. M. Goritskiy, I. N. Kidin, T. Rozhnova, and M. A. Shtremel, Phys. Met. Metall. 34(1972)134.

    Google Scholar 

  13. R. E. Reed-Hill, “Hydrogen Effects in Metals,” I. M. Bernstein and A. w. Thompson, Eds., pg. 873, TMS AIME, New York, NY, 1981.

    Google Scholar 

  14. J. G. Morlet, H. H. Johnson and A. R. Troiano, J.I.S.I. 189(1958)37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publisher, Dordrecht

About this paper

Cite this paper

Watson, P.G., Reed-Hill, R.E. (1985). On the Embrittlement of Niobium by Oxygen. In: Krausz, A.S. (eds) Time-Dependent Fracture. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5085-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5085-6_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8748-3

  • Online ISBN: 978-94-009-5085-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics