Skip to main content

Thermal-Mechanical Fatigue Crack Growth in Inconel X-750

  • Conference paper

Abstract

Thermal-mechanical fatigue crack growth (TMFCG) was studied in a γ-γ’ nickel base superalloy Inconel X-750 under controlled load amplitude in the temperature range from 300 to 650°C. In-phase (Tmax at σmax), out-of-phase (Tmin at σmax) and isothermal tests at 650°C were performed on single-edge notch bars under fully reversed cyclic conditions.

A DC electrical potential method was used to measure crack length. The electrical potential response obtained for each cycle of a given wave form and R value yields information on crack closure and crack extension per cycle. The macroscopic crack growth rates are reported as a function of ΔK and the relative magnitude of the TMFCG are discussed in the light of the potential drop information and of the fractographic observations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sheffler, K. D., Vacuum Thermal-Mechanical Fatigue Behavior of Two Iron-Base Alloys, ASTM STP 612, (1976) 214–226,

    Google Scholar 

  2. Skelton, R. P., Environmental Crack Growth in 1/2Cr-Mo-V steel during Isothermal High Strain Fatigue and Temperature Cycling, Mat. Sci. Eng., vol. 2, (1978) 287–298.

    Article  Google Scholar 

  3. Fujino, N. and Tarai, S., Effect of Thermal Cycle on Low Cycle Fatigue Life of Steels and Grain Boundary Sliding Characteristics, ICM 3, vol. 2, 1979, 49–58.

    Google Scholar 

  4. Kuwabara, K. and Nitta, A., Thermal-Mechanical Low Cycle Fatigue under Creep-Fatigue Interaction in Type 304 Stainless Steel, ICM 3, vol. 2, 1979, 69–78.

    Google Scholar 

  5. Rau, C.A., Gemma,A.E.,Leverant, G.R., Thermal-Mechanical Fatigue Crack Propagation in Nickel and Cobalt Base Superalloys under Various Strain-Temperature Cycles, ASTM STP 520 (1973) 166–178.

    Google Scholar 

  6. Gemma, A.E., Langer, B.S. and Leverant, G.R., Thermal-Mechanical Fatigue Crack Propagation in Anisotropic Nickel Base Superalloys, ASTM STP 612 (1976) 199–213,

    Google Scholar 

  7. Gemma,A.E., Ashland, F.X. and Masci, R.M., The Effects of Stress Dwells and Varying Mean Strain on Crack Growth During Thermal Mechanical Fatigue, J. Test. Eval., vol, 9, no. 4, (1981) 209–215.

    Article  Google Scholar 

  8. Troshchenko, V.T. and Zaslotskaya, L.A., Fatigue Strengtlr of Superalloys Subjected to Combined Mechanical and Thermal Loading, ICM 3, vol. 2, (1979) 3–12.

    Google Scholar 

  9. Meyers, G. J., Fracture Mechanics Criteria for Turbine Engines and Hot Section Components, NASA CR-167896, (1982).

    Google Scholar 

  10. Jaske, C.E., Thermal Mechanical Low Cycle Fatigue of AISI 1010 Steel, ASTM STP 612, (1976) 170–198,

    Google Scholar 

  11. Westwood, H. J. and Moles, M.D., Creep-Fatigue Problems in Electricity Generation Plants, Can. Met, Quart., vol. 18, (1979) 215–230.

    Google Scholar 

  12. Bhongbhobhat, S., The Effect of Simultaneously Alternating Temperature and Hold Time in the Low Cycle Fatigue Behavior of Steels, Low Cycle Fatigue Strength and Elasto-Plastic Behavior of Materials, eds. Rie, K.T. and Harbach, E. DVM (1979), 73–82

    Google Scholar 

  13. Leverant, G. R,, Strongman, T.E. and Langer, B.S., Parameters Controlling the Thermal Fatigue Properties of Conventional Cast and Directionally-Solidified Turbine Alloys, Superalloys: Metallurgy and Manufactures, ed., Kear, B.H., Muzuka, D.R., Tien, J.K., and Wlodek, S.T. Claxtors Pub. (1976) 285–295,

    Google Scholar 

  14. Okazaki, M. and Koizumi, T., Crack Propagation During Low Cycle Thermal-Mechanical and Isothermal Fatigue at Elevated Temperatures, Met. Trans, vol. 14A, (1983) 1641–1648.

    Article  Google Scholar 

  15. Kuwabara, K., Nitta, A. and Kitamura, T., Thermal-Mechanical Fatigue Life Prediction in High Temperature Component Materials for Power Plants, Conf. on Advances in Life Prediction Methods, ASME-MPC, Albany, N.Y. (1983) 131–141.

    Google Scholar 

  16. Wareing, J., Mechanisms of High Temperature Fatigue and Creep- Fatigue Failure in Engineering Materials, Fatigue at High Temperature, ed. Skelton, R.P., Applied Sci. Pub., (1983) 135–185.

    Google Scholar 

  17. Lloyd, G. J., High Temperature Fatigue and Creep-Fatigue Crack Propagation: Mechanics, Mechanisms and Observed Behavir in Structural Materials, Fatigue at High Temperature, ed. Skelton, R.P., Applied Sci. Pub. (1983) 187–258.

    Google Scholar 

  18. Coffin, L. F., Damage Processes in Time Dependent Fatigue — A Review, Creep-Fatigue-Environment Interactions, eds. Pelloux, R. M. and Stoloff, N.S., AIME (1980) 1–23.

    Google Scholar 

  19. Mills, W. J. and James, L.A., Effect of Temperature on the Fatigue Crack Propagation Behavior of Inconel X-750, Fat. Eng. Mat. Struct., vol. 3, (1980). 159–175.

    Article  Google Scholar 

  20. Skelton, R.P., The Growth of Short Cracks During High Strain Fatigue and Thermal Cycling, ASTM STP 770, (1982) 337–381.

    Google Scholar 

  21. Koizumi, T. and Okazaki, M., Crack Growth and Prediction of Endurance in Thermal-Mechanical Fatigue of 12 Cr-Mo-V-W Steel, Fat. Eng. Mat. Struct., vol, 1, (1979) 509–520.

    Article  Google Scholar 

  22. Harris, D. O., Stress Intensity Factors for Hollow Circumferentially Notched Round Bars, J. Basic Eng., vol. 89 (1967) 49–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publisher, Dordrecht

About this paper

Cite this paper

Marchand, N., Pelloux, R.M. (1985). Thermal-Mechanical Fatigue Crack Growth in Inconel X-750. In: Krausz, A.S. (eds) Time-Dependent Fracture. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5085-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5085-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8748-3

  • Online ISBN: 978-94-009-5085-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics