Skip to main content

The Application of Thermodynamics to Molecular Beam Epitaxy

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 87))

Abstract

Thermodynamics is most rigorously applied to systems at equilibrium. In its extension to MBE, the interaction with kinetics, the effect of chemical over-potential and the concept of local equilibrium are briefly described. The growth of GaAs is considered in detail, as experimental data is available for comparison. While in general in MBE, kinetic barriers to reactions are expected to confuse thermodynamic guidelines, it is found that under conditions where the best quality layers are obtained their impact is slight. Kinetically induced defects can be reduced to the part per billion range. Against this background the main competing (contaminating) reactions and doping processes are examined. Potential (elemental sulphur) and impractical (elemental zinc) dopants can be identified, without recourse to MBE, from existing thermochemical data. Kinetic barriers, when they occur, are more clearly revealed by the analysis. These barriers seldom involve the commonly assumed dopant incorporation step.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Arthur, T.R. Brown, J. Vac. Sci. Technol. 12, 200 (1975).

    Article  CAS  Google Scholar 

  2. S. Nagata, T. Tanaka, J. Appl. Phys. 48, 940 (1977).

    Article  CAS  Google Scholar 

  3. P.M. Petroff, Second IUPAP/UNESCO Semiconductor Symp, Trieste (1982).

    Google Scholar 

  4. B. Goldstein, Phys. Rev. 121, 1305 (1961).

    Article  CAS  Google Scholar 

  5. J.R. Arthur, J. Phys. Chem Solids 28, 2257 (1967).

    Article  CAS  Google Scholar 

  6. N. Matsumoto, K. Kumabe, Jap. J. Appl. Phys. 19, 1583 (1980).

    Article  CAS  Google Scholar 

  7. J.H. Neave, B.A. Joyce, J. Cryst. Growth 43, 204 (1978).

    Article  CAS  Google Scholar 

  8. S.R. McAfee, D.V. Lang, W.T. Tsang, 161st Electrochem Soc. meeting, Montreal (1982).

    Google Scholar 

  9. W.T. Tsang, Appl. Phys. Lett. 39, 786 (1981).

    Article  CAS  Google Scholar 

  10. J.H. Neave, P. Blood, B.A. Joyce, Appl. Phys. Lett. 36, 311 (1980).

    Article  CAS  Google Scholar 

  11. H. Kunzel, J. Knecht, H. Jung, K. Wunstel, K. Ploog, Appl. Phys. A 28, 167 (1982).

    Article  Google Scholar 

  12. C.T. Foxon, B.A. Joyce, Surf. Sci. 50, 434 (1975).

    Article  CAS  Google Scholar 

  13. D.T.J. Hurle, J. Phys. Chem. Solids 40, 613 (1979).

    Article  CAS  Google Scholar 

  14. P.D. Kircher, J.M. Woodall, J.L. Freeouf, D.J. Wolford, G.D. Pettit, J. Vac. Sci. Technol. 19, 604 (1981).

    Article  Google Scholar 

  15. A.Y. Cho, M.B. Panish, J. Appl. Phys. 43, 5118 (1972).

    Article  CAS  Google Scholar 

  16. C.E.C. Wood, D. DeSimone, K. Singer, G.W. Wicks, J. Appl. Phys. 53, 4230 (1982).

    Article  CAS  Google Scholar 

  17. B.A. Joyce, C.T. Foxon, Jap. J. Appl. Phys. 16, Suppl. 16 - 1, 17 (1977).

    Google Scholar 

  18. R. Heckingbottom, C.J. Todd, G.J. Davies, J. Electrochem. Soc. 127, 444 (1980).

    Article  CAS  Google Scholar 

  19. O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th Ed., Pergamon Press, London (1979).

    Google Scholar 

  20. M. Naganuma, K. Takahashi, Phys. Status Solidi A 31, 187 (1975).

    Article  CAS  Google Scholar 

  21. C.E.C. Wood, Appl. Phys. Lett. 33, 770 (1978).

    Article  CAS  Google Scholar 

  22. G.J. Davies, D.A. Andrews, R. Heckingbottom, J. Appl. Phys. 52, 7214 (1981).

    Article  CAS  Google Scholar 

  23. M. Heyen, H. Bruch, K.H. Bachem, P. Balk, J. Cryst. Growth 42, 127 (1977).

    Article  CAS  Google Scholar 

  24. H.C. Casey, M.B. Panish, J. Cryst. Growth 13 /14, 818 (1972).

    Article  Google Scholar 

  25. D.T.J. Hurle, Proc 6th Int. Symp. on GaAs and Related Com¬pounds, Inst. Phys. Conf. Series 33a, 113 (1977).

    Google Scholar 

  26. J.B. Mullin, J. Cryst. Growth 42, 77 (1977).

    Article  CAS  Google Scholar 

  27. E. Venhoff, M. Maier, K.H. Bachem, P. Balk, J. Cryst. Growth. 53, 598 (1981).

    Article  Google Scholar 

  28. M.A. Savva, J. Electrochem. Soc. 123, 1498 (1976).

    Article  CAS  Google Scholar 

  29. D.J. Ashen, P.J. Dean, D.T.J. Hurle, J.B. Mullin, A.M. White, P.D. Greene, J. Phys. Chem. Solids 36, 1041 (1975).

    Article  CAS  Google Scholar 

  30. G.J. Davies, D.A. Andrews, R. Heckingbottom, 2nd Int. Symp. on MBE, Tokyo (1982).

    Google Scholar 

  31. O.M. Uy, D.W. Muenow, P.J. Ficalora, J.L. Margrave, Trans. Faraday Soc., 64, 2998 (1968).

    Article  CAS  Google Scholar 

  32. M.B. Panish, J. Electrochem Soc. 127, 2729 (1980).

    Article  CAS  Google Scholar 

  33. D.M. Collins, J.N. Miller, J. Appl. Phys. 53, 3010 (1982).

    Article  CAS  Google Scholar 

  34. R. Heckingbottom, G.J. Davies, K.A. Prior, Surf. Sci., 132, 375 (1983).

    Article  CAS  Google Scholar 

  35. D.T.J. Hurle, J. Phys. Chem. Solids 40, 647 (1979).

    Article  CAS  Google Scholar 

  36. R. Heckingbottom, G.J. Davies, J. Cryst. Growth. 50, 644 (1980).

    Article  CAS  Google Scholar 

  37. A.Y. Cho, I. Hayashi, J. Appl. Phys. 42, 4422 (1971).

    Article  CAS  Google Scholar 

  38. A. Munoz-Yague, S. Baceiredo, J. Electrochem Soc. 129, 2108 (1982).

    Article  CAS  Google Scholar 

  39. J.C.M. Hwang, H. Temkin, T.M. Brennan, R.E. Frahm, Appl. Phys. Lett. 42, 66 (1983).

    Article  CAS  Google Scholar 

  40. Y.G. Chai, R. Chow, C.E.C. Wood, Appl. Phys. Lett. 39, 800 (1981).

    Article  CAS  Google Scholar 

  41. J.M. Balliingall, C.E.C. Wood, Appl. Phys. Lett. 41, 947 (1982).

    Article  Google Scholar 

  42. D.T.J. Hurle, private communication.

    Google Scholar 

  43. A.Y. Cho, J. Appl. Phys. 46, 1733 (1975).

    Article  CAS  Google Scholar 

  44. C.E.C. Wood, B.A. Joyce, J. Appl. Phys. 49, 4854 (1978).

    Article  CAS  Google Scholar 

  45. F. Alexandre, C. Raisin, M.I. Abdalla, A. Brenac, J.M. Masson, J. Appl. Phys. 51, 4296 (1980).

    Article  CAS  Google Scholar 

  46. J.J. Harris, B.A. Joyce, J.P. Gowers, J.H. Neave, Appl. Phys. A. 28, 63 (1982).

    Article  Google Scholar 

  47. M.B. Panish, J. Appl. Phys. 44, 2659 (1973).

    Article  CAS  Google Scholar 

  48. H. Kressel, J.K. Butler, “Semiconductor Lasers and Heterojunction LED’s”, Academic Press, New York (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Heckingbottom, R. (1985). The Application of Thermodynamics to Molecular Beam Epitaxy. In: Chang, L.L., Ploog, K. (eds) Molecular Beam Epitaxy and Heterostructures. NATO ASI Series, vol 87. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5073-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5073-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8744-5

  • Online ISBN: 978-94-009-5073-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics