Skip to main content

Static versus Kinetic Visual Cues for the Processing of Spatial Relationships

  • Chapter
Brain Mechanisms and Spatial Vision

Part of the book series: NATO ASI Series ((ASID,volume 21))

Abstract

The relative contribution of static and kinetic visual cues to spatial vision is considered.

Three sets of experiments are reported showing that i) two feedback channels are used for the visual guidance of a pointing movement, ii) kinetic and static visual cues are separately processed for the recalibration of pointing programmes after prismatic displacement of the visual field, iii) two mechanisms are involved in the visual control of body balance.

These results are consistent with the hypothesis of separate contributions of two parallel and semi-independent visual channels to the programming and guiding of spatially oriented movements and to the control of postural balance. They also point to a functional dissociation between the peripheral and central retina for the processing of kinetic versus static visual cues. Finally, they emphasize the existence of inhibitory interaction between the two visual channels.

The implications of this dual-channel model for the understanding of the mechanisms of spatial vision are discussed in the context of neurophysiological and psychophysical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grüsser O.J. and V. Grüsser–Cornehls. Neuronal mechanisms of visual movement: perception and some psychophysical and behavioral correlations, in R. Jung, ed., Handbook of Sensory Physiology, vol. VII/3 (Berlin; Springer Publishers, 1973 ), 333 – 429.

    Google Scholar 

  2. Sekuler R. and E. Levinson. Mechanisms of motion perception. Psychologia 17 (1974) 38 – 49.

    Google Scholar 

  3. Robson J.G. Spatial and temporal contrast sensitivity functions of the visual system. Journal of the Optometrical Society of America 56 (1966) 1141 – 1142.

    Article  Google Scholar 

  4. Tyler C.W. and J. Torrel. Frequency response characteristics for sinusoidal movement in the fovea and periphery. Perception and Psychophysics 12 (1972) 232 – 236.

    Article  Google Scholar 

  5. Mac Kay D.M. Perceptual stability of a stroboscopically lit visual field containing self luminous objects. Nature (London) 181 (1958) 507 – 508.

    Article  Google Scholar 

  6. Mac Kay D.M. Interactive processes in visual perception, in W.A. Rosenblith, ed., Sensory communication (Cambridge, Mass.: The MIT Press, 1961 ), pp. 339 – 355.

    Google Scholar 

  7. Keele S.W. and M.I. Posner. Processing of visual feedback in rapid movements. Journal of experimental Psychology 77 (1968) 155 – 158.

    Article  PubMed  Google Scholar 

  8. Paillard J. The contribution of peripheral and central vision to visually guided reaching, in D.J. Ingle, M.A. Goodale and R.J.W. Mansfield, eds, Analysis of Visual Behavior (Cambridge, Mass.: The MIT Press, 1982 ), pp. 367 – 385.

    Google Scholar 

  9. Beaubaton D. and N. Chapuis. Role des informations tactiles dans la precision du pointage chez le singe “split brain”. Neuropsychologia 12 (1974) 151 – 155.

    Article  PubMed  Google Scholar 

  10. Beaubaton D., A. Grangetto and J. Paillard. Contribution of positional and movement cues to visuo–motor reaching in split-brain monkey, in I. Steele-Russell, M.W. Van–Hof and G. Berlucchi, eds, Structure and function of cerebral commissures ( Londres: The Macmillan Press, 1979 ), pp. 371 – 384.

    Google Scholar 

  11. Conti P. and D. Beaubaton. Utilisation des informations visuelles dans le controle du mouvement: étude de la précision des pointages chez l’Homme. Le Travail Humain 39 (1976) 19 – 32.

    Google Scholar 

  12. Beaubaton D. and L. Hay. Pointing accuracy in rapid movements under differential visual feedback conditions. Society for Neuroscience. Abstracts 9 (1983) 297.14.

    Google Scholar 

  13. Bard C., L. Hay and M. Fleury. Contribution of vision to the performance and learning of a directional aiming task in children aged 6 to 11, in J.H. Humphrey and J. Clark, eds, Current selected research in motor development, vol. 1 (Princeton, N.J.: Princeton Book C°, Publishers, in press).

    Google Scholar 

  14. Nashner L. and A. Berthoz. Visual contribution to rapid motor responses during postural control. Brain Research 150 (1978) 403 – 407.

    Article  PubMed  Google Scholar 

  15. Motter B.C. and V.B. Mountcastle. The functional properties of the light–sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization. The Journal of Neuroscience 1 (1981) 3 – 26.

    PubMed  Google Scholar 

  16. Welch R.B. Research on adaptation to rearranged vision: 1966–1974. Perception 3 (1974) 367 – 392.

    Article  PubMed  Google Scholar 

  17. Held R. and S.J. Freedman. Plasticity in human sensory-motor control. Science 142 (1963) 445 – 462.

    Article  Google Scholar 

  18. Howard I.P. Displacing the optical array in S.J. Freedman, ed., The neuropsychology of spatially oriented behavior (Homewood, I11.: Dorsey Press, 1963 )

    Google Scholar 

  19. Jordan P.L. Indices pertinents dans l1adaptation a la vision prismatique chez lfHomme. These Doctorat de Ille Cycle. Sciences du Comportement (Universite Aix-Marseille II, 1977 ).

    Google Scholar 

  20. Brouchon M. and P.L. Jordan. Relevant cues in visuomotor rearrangement. Neuroscience Letters supp. 1 (1978) S386.

    Google Scholar 

  21. Paillard J., P.L. Jordan and M. Brouchon. Visual motion cues in prismatic adaptation 1 evidence for two separate and additive processes. Acta Psychologica 48 (1981) 253 – 270.

    Article  PubMed  Google Scholar 

  22. Bonnet C. A tentative model for visual motion detection, Psychologia 18 (1975) 35 – 50.

    Google Scholar 

  23. Bonnet C. Thresholds of motion perception in A.H. Wertheim, W.A. Wagenaar and H.W. Leibowitz, eds, Tutorial in motion perception ( New York: Plenum Press, 1981 ).

    Google Scholar 

  24. Bonnet C. and C. Renard. La détection du mouvement visuel en vision centrale et en vision périphérique. Année Psychologique 77 (1977) 113 – 121.

    Google Scholar 

  25. Kinchla R.A. Visual movement perception: a comparison of absolute and relative movement discrimination. Perception and Psychophysics 9 (1971) 165 – 171.

    Article  Google Scholar 

  26. Murray I., F. MacCanna and J.J. Kulikowski. Contribution of two movement detecting mechanisms to central and peripheral vision. Vision Research 23 (1983) 151–159–

    Article  PubMed  Google Scholar 

  27. Mac Kay D.M. and V. Mac Kay. Antagonism between visual channel for patternrand movement. Nature 263 (1976) 312 – 314.

    Article  Google Scholar 

  28. Kulikowski J.J. and F.B. Mac Canna. Is there antagonism between pattern and movement detection ? Journal of Phsyiology (London) 298 (1979) 22 p.

    Google Scholar 

  29. Von Grttnau M.W. Interaction between “sustained” and transient channels: form inhibits motion in the human visual system. Vision Research 18 (1978) 197 – 201.

    Article  Google Scholar 

  30. Mouncastle V.B., R.A. Andersen and B.C. Motter. The influence of attentive fixation upon the excitability of the light–sensitive neurons of the posterior parietal cortex. The Journal of Neuroscience 1 (1981) 1218 – 1235.

    Google Scholar 

  31. Brandt T.J., J. Dichgans and E. Koenig. Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research 16 (1973) 476–491

    Article  Google Scholar 

  32. Dichgans J. and T.J. Brandt. Visual-vestibular interactions: effects on self-motion perception and postural control, in H.L. Teuber, R. Held and H. Leibowitz, eds, Handbook of sensory physiology, vol. 7. Perception (Berlin: Springer Publisher, 1978 ) pp. 753 – 804.

    Google Scholar 

  33. Held R.W., J. Dichgans and J. Bauer. Characteristics of moving visual areas influencing spatial orientation. Vision Research 15 (1975) 357 – 365.

    Article  PubMed  Google Scholar 

  34. Bles W., T.S. Kapteyn and G. De Wit. Effects of visual-vestibular interaction on human posture. Advances in Oto-Rhino-Laryngology 22 (1977) 111 – 118.

    Google Scholar 

  35. Dichgans J., K.H. Mauritz, J.H.J. Allum and T. Brandt. Postural sway in normals and atactic patients: analysis of stabilizing effects of vision. Agressologie 17 (1976) 15 – 24.

    PubMed  Google Scholar 

  36. Kapteyn T.S. Data processing of posturographic curves. Agressologie 13 (1972) 29–34–

    PubMed  Google Scholar 

  37. Lee D.N. and E. Aronson. Visual proprioceptive control of standing in human infants. Perception and Psychophysics 15 (1974) 529 – 532.

    Article  Google Scholar 

  38. Lestienne F., J. Soechting and A. Berthoz. Postural readjustments induced by linear motion of visual scenes. Experimental Brain Research 28 (1977) 363 – 384.

    Article  Google Scholar 

  39. Lacour M., C. Xerri and M. Hugon. Muscle response and monosynaptic reflexes in the falling monkey: the role of the vestibular system. Journal de Physiologie (Paris) 74 (1978) 427 – 438.

    Google Scholar 

  40. Vidal P.P., M. Gouny and A. Berthoz. Role de la vision dans le declenchement de reactions posturales rapides. Archives italiennes de Biologie 116 (1978) 281 – 291.

    PubMed  Google Scholar 

  41. Berthoz A., M. Lacour, J.F. Soechting and P.P. Vidal. The role of vision in the control of posture during linear motion, in R. Granit and P. Pompeiano, eds, Reflex control of posture and movement. Progress in Brain Research 50 (1979) 197 – 209.

    Chapter  Google Scholar 

  42. Reason J.T. Motion Sickness adaptation: a neural mismatch model. Journal of the Royal Society of Medicine 71 (1978) 819 – 829.

    PubMed  Google Scholar 

  43. Brandt T. and R.B. Daroff. The multisensory physiological and pathological vertigo syndromes. Annals of Neurology 7 (1980) 195 – 203.

    Article  PubMed  Google Scholar 

  44. Berthoz A. Rôle de la proprioception dans le contrôle de la posture et du geste, in H. Hecaen and M. Jeannerod, eds, Du contrôle moteur à l’organisation du geste (Paris; Masson Publisher, 1978 ), pp. 187 – 224.

    Google Scholar 

  45. Amblard B. and J. Crémieux. Rôle de l’information visuelle du mouvement dans le maintien de l’equilibre postural chez l’>Homme. Agressologie 17 (1976) 25 – 36.

    PubMed  Google Scholar 

  46. Amblard B. and A. Garblanc. Role of foveal and peripheral vision information in the maintenance of postural equilibrium in man. Perceptual and Motor Skills 51 (1980) 903 – 912.

    Article  PubMed  Google Scholar 

  47. Amblard B., A. Garblanc and J. Crémieux, Position versus visual motion cues in human body sway. Symposium on the study of motion perception (Veldhoven, Netherlands, Aug. 24–29 1980) unpublished.

    Google Scholar 

  48. Delorme A. La perception de la vitesse en éclairage intermittent. Revue Canadienne de Psychologie 25 (1971) 213–221.

    Google Scholar 

  49. Amblard B., A. Carblanc, J. Crémieux and A. Marchand. Two modes of visual control of balance in man according to frequency range of body sway. Neuroscience Letters, Suppl. 10 (1982) S42.

    Google Scholar 

  50. Körner F. and P.H. Schiller. The optokinetic response under open and closed loop conditions in the monkey. Experimental Brain Research 14 (1972) 318 – 330.

    Article  Google Scholar 

  51. Wolfe J.M. and R. Held. Cyclopean stimulation can influence sensations of self-motion in normal and stereoblind subjects. Perception and Psychophysics 28 (1980) 139 – 142.

    Article  PubMed  Google Scholar 

  52. Kapteyn T.S., W. Bles, Th. Brandt and E.R. Wist. Visual stabilization of posture: effect of light intensity and stroboscopic surroung illumination. Agressologie 20 (1979) 191 – 192.

    Google Scholar 

  53. Cleland B.G., M.W. Dubin and W.R. Levick. Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus. Journal of Physiology (London) 217 (1971) 473 – 496.

    Google Scholar 

  54. Ikeda H. and M.J. Wright. Retinotopic distribution, visual latency and orientation tuning of “sustained” and “transient” cortical neurones in Area 17 of the cat. Experimental Brain Research 22 (1975) 385 – 398.

    Google Scholar 

  55. Jakiela H.G., C. Enroth-Cugell and R.M. Shapley. Adaptation and dynamics in X-cells and I-cells of the cat’s retina. Experimental Brain Research 24 (1976) 335 – 342.

    Article  Google Scholar 

  56. Lennie P. Perceptual signs of parallel pathways. Philosophical Transations of the Royal Society B290 (1980) 23 – 37.

    Article  Google Scholar 

  57. Howard I.P. Human visual orientation (New-York: John Wiley and Sons, Publishers, 1982 ) pp. 39 – 78.

    Google Scholar 

  58. Lennie P. Parallel visual pathways : a review. Vision Research 20 (1980) 561 – 594.

    Article  PubMed  Google Scholar 

  59. Stone J., B. Dreher and A. Leventhal. Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Research Review 1 (1979) 345 – 394.

    Article  Google Scholar 

  60. Holliday I.E. and K.H. Ruddock. Two spatio-temporal filters in human vision 1) Temporal and spatial frequency response characteristics. Biological Cybernetics 47 (1983) 173 – 190.

    Article  PubMed  Google Scholar 

  61. Duysens J. and G.A. Orban. Is stimulus movement of particular importance in the functioning of cat visual cortex ? Brain Research 220 (1981) 184 – 187.

    Article  PubMed  Google Scholar 

  62. Orban G.A. Neuronal operations in the visual cortex (Berlin: Springer, Publisher, 1983 ).

    Google Scholar 

  63. Zeki S.M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology, London 236 (1974) 549 – 573.

    Google Scholar 

  64. Zihl J., D. Von Cramon and N. Mai. Selective disturbance of movement vision after bilateral brain damage. Brain 106 (1983) 313 – 340.

    Article  PubMed  Google Scholar 

  65. Georgeson H.A. Antagonism between channels for pattern and movement in human vision. Nature (London) 259 (1976) 413 – 415.

    Article  Google Scholar 

  66. Breitmeyer B.G. and L. Ganz. Implications of sustained and transient channels for theories of visual pattern measking, saccadic suppression and information processing. Psychological Review 83 (1976) 1 – 36.

    Article  PubMed  Google Scholar 

  67. Van Essen D.C. and J.H.R. Maunsel. Hierarchical organization and functional streams in the visual cortex. TINS 63 (1983) 370 – 375.

    Google Scholar 

  68. Ungerleider L.G. and M. Mishkin. Two cortical visual systems, in D.J. Ingle, M.A. Goodale and D.J.W. Mansfield, eds, Analysis of visual behavior (Cambridge, Mass.: The MIT Press, 1982 ), pp. 549 – 586.

    Google Scholar 

  69. Schneider G.E. Two visual systems. Science 163 (1969) 895 – 902.

    Article  PubMed  Google Scholar 

  70. Trevarthen C.B. Two mechanisms of vision in primates. Psychologische Forschung 31 (1968) 299 – 337.

    Article  PubMed  Google Scholar 

  71. Mishkin M., L.G. Ungerleider and K.A. Macko. Object vision and spatial vision: two cortical pathways. TINS 64 (1983) 414 – 417.

    Google Scholar 

  72. Pohl W. Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. Journal of Comparative and physiological Psychology 82 (1973) 227 – 239.

    Article  PubMed  Google Scholar 

  73. Mishkin M. and L.G. Ungerleider. Contribution of striate inputs to the visuospatial functions of parieto–preoccipital cortex in monkeys. Behavioral Brain Research 6 (1982) 57 – 77.

    Article  Google Scholar 

  74. Stone J., B. Dreher and A. Leventhal. hierarchical and Parallel mechanis, in the organization of visual cortex. Brain Research Review 1 (1979) 345–394.

    Google Scholar 

  75. Johansson G. Configuration in event perception ( Upsalla: Almkvist and Wiksell Publishers, 1950 ).

    Google Scholar 

  76. Paillard J. Le corps et ses langages d’espace, in E. Jeddi, ed., Le corps en Psychiatrie (Paris: Masson, Publisher, 1982 ), pp. 53 – 69.

    Google Scholar 

  77. Lee D.N. The functions of vision, in H.L. Pick and E. Salbman, eds, Modes of perceiving and processing information (Hillsdale, N.J.: Erlbaum, Publisher, 1977 ) pp. 159 – 170.

    Google Scholar 

  78. Mountcastle V.B., J.C. Lynch, A. Georgopoulos, H. Sakata and C. Acuna. Posterior parietal association cortex of the monkey: command functions for operations withing extrapersonal space. Journal of Neurophysiology 38 (1975) 871 – 908.

    PubMed  Google Scholar 

  79. Brodal P. The corticopontine projections in rhesus monkey. Origin and principles of organization. Brain 101 (1978) 251 – 283.

    Article  PubMed  Google Scholar 

  80. Glickstein M., J.L. Cohen, B. Dixon, A. Gibson, M. Hollins, E. Labossiere and F. Robinson. Corticopontine visual projections in Macaque monkeys. The Journal of comparative Neurology 190 (1980) 209 – 229.

    Article  PubMed  Google Scholar 

  81. Paillard J. Apraxia and the neurophysiology of motor control. Philosophical Transactions of the Royal Society of London Series B 298 (1982) 111 – 134.

    Article  PubMed  Google Scholar 

  82. Hood J.D., Observations upon the neurological mechanism of optokinetic nystagmus with especial reference to the contribution of peripheral vision. Acta Otolaryngologia 63 (1967) 208 – 215.

    Article  Google Scholar 

  83. Amblard B., J.H. Courjon, J. Crémieux, J.M. Flandrin and H. Kennedy. The influence of stroboscopic rearing on the optokinetic nystagmus in the cat. Journal of Physiology (London) 317 (1981) 74 – 75.

    Google Scholar 

  84. Weber J.T. Oral communication at the symposium on The oculomotor role of the accessory optic system and projection: is there a single vertebrate scheme. Society for Neuroscience Abstracts 9 (1983) 336.

    Google Scholar 

  85. Hoffman K.P. and H.P. Huber. Response to visual stimulation in single cells in the nucleus of the optic tract (NOT) during optokinetic nystagmus (OKN) in the awake cat. Society for Neuroscience Abstracts 9 (1983) pp. 303 – 311.

    Google Scholar 

  86. Paillard J. Les déterminants moteurs de l’organisation de l’espace. Cahiers de Psychologie 4 (1971) 261 – 316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Paillard, J., Amblard, B. (1985). Static versus Kinetic Visual Cues for the Processing of Spatial Relationships. In: Ingle, D.J., Jeannerod, M., Lee, D.N. (eds) Brain Mechanisms and Spatial Vision. NATO ASI Series, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5071-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5071-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8743-8

  • Online ISBN: 978-94-009-5071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics