Skip to main content

New Agents for Probing Glucose Turnover and Receptor Densities in the Brain

  • Chapter
Book cover Progress in radiopharmacology 1985

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 9))

  • 28 Accesses

Abstract

In vivo functional imaging of the brain has, in contrast to that of other organs like heart or liver, only developed in the last decade. This is mainly due to a special feature of brain physiology, namely the blood-brain-barrier (BBB). BBB selectively restricts the access to the brain of most non-lipophilic substances borne in blood; only a relatively small number of vital substrates are transported into the brain by specialized carrier system. Thus, most of the radio-pharmaceuticals available in the early days of nuclear medicine were excluded from the brain. Only in areas with a destroyed BBB (some tumours etc) was it possible to observe measurable concentrations e.g. of Tc99m-compounds (1). This situation has dramatically changed recently with the application of metabolic tracers or analogs labelled with short-lived “organic” radionuclides. These radionuclides that form stable covalent binds to carbon, either the positron emitters 11C (T1/2= 98 min), 18F (T1/2= 110 min) and 75Br (T1/2= 98 min) or the single photon emitter 123I (T1/2= 13.3 h) can be introduced into most of the compounds important for the characteristic metabolism or function of the brain with acceptable alterations in their physico-chemical behaviour (2). They also lend themselves to 3-dimensional imaging, the positron emitters to positron-emission computed tomography (PECT) and the single photon emitters to single photon emission computed tomography (SPECT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oldendorf WH, Nuclear medicine in clinical neurology: an update. Ann. Neurol. 10: 207, 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Stöcklin G, Kloster G, Metabolic analogue tracers. In: Computed emission tomography. Ell PJ, Holman BL (eds), Oxford, Oxford University Press, pp 299–338, 1982.

    Google Scholar 

  3. Pardridge WM, Oldendorf WH, Kinetics of blood-brain barrier transport of hexoses. Biochim. biophys. Acta 382: 377, 1975.

    Article  PubMed  CAS  Google Scholar 

  4. Lifton JF, Welch MJ, Preparation of glucose labeled with 20-minute half-lived carbon-11. Radiat. Res. 45: 35, 1971.

    Article  PubMed  CAS  Google Scholar 

  5. Straatmann M, Welch MJ, The liquid chromatographic purification of carbon-11 labeled glucose. Int. J. appl. Radiat. Isot. 24: 234, 1973.

    Article  PubMed  CAS  Google Scholar 

  6. Raichle ME, Larson KB, Phelps ME, Grubb RL, Welch MJ, Ter-Pogossian MM, In vivo measurement of brain glucose transport and metabolism employing glucose-11c. Amer. J. Physiol. 228:1936, 1975.

    PubMed  CAS  Google Scholar 

  7. Raichle ME, Welch MJ, Grubb RL, Higgins CS, Ter-Pogossian MM, Larson KB, Measurement of regional substrate utilization rates by emission tonography. Science 199: 986, 1978.

    Article  PubMed  CAS  Google Scholar 

  8. Jones SC, Ackerman RH, Hoop B, Baron JC, Brownell GL, Taveras JM, Brain uptake and organ distribution of 11C frcm 11C-labeled glucose. Int. J. Nucl. Med. Biol. 10: 173, 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Ehrin E, Westman E, Nilsson SO, Nilsson JIG, Widen L, Greitz T, Larson CM, Tillberg JE, Malmborg P, A convenient method for production of 11C-labelled glucose. J. Lab. Connp. Radiopharm. 17: 453, 1980.

    Article  CAS  Google Scholar 

  10. Ehrin E, Stone-Elander S, Nilsson JLG, Bergström M, Blomqvist G, Brisman T, Eriksson L, Greitz T, Jansson PE, Litton JE, Malmborg P, af Ugglas M, Widen L, C-11 -labeled glucose and its utilization in positron-emission tomography. J. nucl. Med. 24: 326, 1983.

    PubMed  CAS  Google Scholar 

  11. Bergström M, Collins VP, Ehrin E, Ericson K, Eriksson L, Greitz T, Halldin C, Von Hoist H, Langström B, Lilja A, Lundqvist H, Nagren K, Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using (68Ga) EDTA, (11C) glucose and (11C) methionine. J. Conput. Assist. Tomogr. 7: 1062, 1983.

    Article  Google Scholar 

  12. Sacks W, Sacks S, Badalamenti A, Fleischer A, A proposed method for the determination of cerebral regional intermediary glucose metabolism in humans in vivo using specifically labeled 11C-glucose and positron emission transverse tomography (PETT). I. An animal model with 14C- glucose and rat brain autoradiography. J. Neurosci. Res. 7: 57, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Sckoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M, The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28: 897, 1977.

    Article  Google Scholar 

  14. Sokoloff L, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J. Cereb. Blood Flow Metabol. 1: 7, 1981.

    Article  CAS  Google Scholar 

  15. Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE, Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-

    Google Scholar 

  16. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP, Metabolic trapping as a principle of radiopharmaceutical design: Some factors responsible for the biodistribution of (18p) 2-deoxy-2- fluoro-D-glucose. J. nucl. Med. 19: 1154, 1978.

    PubMed  CAS  Google Scholar 

  17. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L, Ihe (18F) fluoro-deoxyglucose method for the measurement of local cerebral glucose utilization in man. Circulat. Res. 44: 127, 1979.

    PubMed  CAS  Google Scholar 

  18. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE, Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: Validation of method. Ann. Neurol. 6: 371, 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Shiue CY, Salvadori PA, Wolf AP, Fcwler JS, MacGregor RR, A new improved synthesis of 2-deoxy-2 (18F) fluoro-D-glucose from 18F- labeled acetyl hypofluorite. J. nucl. Med. 23: 899, 1982.

    PubMed  CAS  Google Scholar 

  20. Diksic M, Jolly D, New high-yield synthesis of 18F-labelled 2-deoxy- 2-fluoro-D-glucose. Int. J. appl. Radiat. Isot. 34: 893, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Shiue CY, To KC, Wolf AP, A rapid synthesis of 2-deoxy-2-fluoro-D- glucose from xenon difluoride suitable for labelling with 18F. J. lab. Corp. Radiopharm. 20: 157, 1983.

    Article  CAS  Google Scholar 

  22. Sood S, Firnau G, Garnett ES, Radiofluorination with xenon difluoride A new high yield synthesis of (18F) 2-fluoro-2-deoxy-D-glucose. Int. J appl. Radiat. Isot. 34: 743, 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Levy S, Livni E, Elmaleh D, Curatolo W, Direct displacement with anhydrous fluoride of the C-2 trifluoromethylsulphonate of methyl 4,6-0 -benzylidene-3-0 -methyl-2-0-trifluoromethy-sulphonyl-β-D-mannopyranoside. J. chem. Soc. Chem. Comm. pp 972–973, 1982.

    Google Scholar 

  24. Levy S, Elmaleh DR, Livni E, A new method using anhydrous (18F) fluoride to radiolabel 2- (18F) fluoro-2-deoxy-D-glucose. J. nucl. Med. 23: 918, 1982.

    PubMed  CAS  Google Scholar 

  25. Tewson TJ, Cyclic sulfur esters as substrates for nucleophilic substitution. A new synthesis of 2-deoxy-2-fluoro-D-glucose. J. Org. Chem. 48–3507, 1983.

    Google Scholar 

  26. Tewson TJ, Synthesis of no-carrier-added fluorine-18 2-fluoro-2- deoxy-D-glucose. J. nucl. Med. 24: 718, 1983.

    PubMed  CAS  Google Scholar 

  27. Barrio JR, MacDonald NS, Robinson GD, Najafi A, Cook JS, Kuhl DE, Remote, semiautomated production of F-18 labeled 2-deoxy-2-fluoro-D- glucose. J. nucl. Med. 22: 372, 1981.

    PubMed  CAS  Google Scholar 

  28. Fowler JS, MacGregor RR, Wolf AP, Farrell AA, Karlstrom KI, Ruth TJ, A shielded synthesis system for production of 2-deoxy-2-(18F) fluoro-D-glucose. J. nucl. Med. 22: 376, 1981.

    PubMed  CAS  Google Scholar 

  29. Reivich M, Alavi A, Greenberg J, Farkas T, Wolf A, 18F-fluorodeoxy- glucose method for measuring local cerebral glucose metabolism in man: Technique and results. Progr. Nucl. Med. 7: 138, 1981.

    CAS  Google Scholar 

  30. Alavi A, Reivich M, Greenberg JH, Wolf AF, Positron emission tomography of the brain. In: Computed emission tomography. Ell PJ, Holman BL (eds) Oxford University Press, Oxford, pp 134–187, 1982.

    Google Scholar 

  31. Phelps ME, Mazziotta JC, Huang SC, Study of cerebral function with positron computed tomography. J. Cereb. Blood Flow Metabol. 2: 113, 1982.

    Article  CAS  Google Scholar 

  32. Heiss WD, Phelps ME, (eds), Positron emission tomography of the brain. Berlin, Springer Verlag, 1983.

    Google Scholar 

  33. Hawkins RA, Phelps ME, Huang SC, Kuhl DE, Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J. Cereb. Blood Flow Metabol. 1: 37, 1981.

    Article  CAS  Google Scholar 

  34. Hawkins RA, Miller AL, Loss of radioactive 2-deoxy-D-glucose-6- phosphate from brains of conscious rats: Implications for quantitative autoradiographic determination of regional glucose utilization. Neurosci. 3: 251, 1978.

    Article  CAS  Google Scholar 

  35. Sacks W, Sacks S, Fleischer A, A comparison of the cerebral uptake and metabolism of labeled glucose and deoxygluxose in vivo in rats. Neurochem. Res. 8: 661, 1983.

    Article  PubMed  CAS  Google Scholar 

  36. MacGregor RR, Fowler JS, Wolf AP, Shiue CY, Lade RE, Wan CN, A synthesis of 2-deoxy-D- (1-11C)glucose for regional metabolic studies: Concise communication. J. nucl. Med. 22: 800, 1981.

    PubMed  CAS  Google Scholar 

  37. Vora MM, Boothe TE, Finn RD, Smith PM, Gilson AJ, Quality control procedures in the preparation of 2-deoxy-D- (1-11C) glucose radio-pharmaceutical. J. Lab. Com. Radiopharm. 20: 147, 1983.

    Google Scholar 

  38. Reivich M, Alavi A, Wolf A, Greenberg JH, Fowler J, Christman D, MacGregor R, Jones SC, London J, Shiue C, Yonekura Y, Use of 2-deoxy- D-(1-11C) glucose for the determination of local cerebral glucose metabolism in humans: Variation within and between subjects. J. Cereb. Blood Flow Metabol. 2: 307, 1982.

    Article  CAS  Google Scholar 

  39. Kloster G, Müller-Platz C, Laufer P, 3- (11c)-methyl-D-glucose, A potential agent for regional cerebral glucose utilization studies: synthesis, chromatography and tissue distribution in mice. J. Lab. Conp. Radiopharm. 18: 855, 1981.

    Article  CAS  Google Scholar 

  40. Laufer P, Kloster G, Remote control synthesis of 3- (11C)-methyl-D- glucose. Int. J. appl. Radiat. Isot. 33: 775, 1982.

    Article  PubMed  CAS  Google Scholar 

  41. Vyska K, Freundlieb C, Höck A, Becker V, Schmid A, Feinendegen LE, Kloster G, Stöcklin G, Heiss WD, Analysis of local perfusion rate and local glucose transport rate in brain and heart in man by means of C-11-methyl-D-glucose and dynamic positron emission tomography. Radioakt. Isot. Klin. Forsch. 15: 129, 1982.

    Google Scholar 

  42. Heiss WD, Vyska K, Kloster G, Traupe H, Freundlieb C, Höck A, Feinen-degen LE, Stöcklin G, Demonstration of decreased functional activity of visual cortex by (11C) methylglucose and positron emission tomography. Neuroradiol. 23: 45, 1982.

    Article  CAS  Google Scholar 

  43. Kloster G, Stöcklin G, Vyska K, Freundlieb C, Höck A, Feinendegen LE, Traupe H, Heiss WD, 3-(11C)-methyl-D-glucose, an agent for the assessment of regional glucose transport across the blood-brain barrier. In: Progress in Radiopharmacology, Vol. 3, Cox PH (ed), Martinus Nijhoff, Den Haag, pp 199–211, 1982.

    Google Scholar 

  44. Vyska K, Kloster G, Feinendegen LE, Heiss WD, Stöcklin G, Höck A, Freundlieb C, Aulich A, Schuier F, Thai HU, Becker V, Schmid A, Regional perfusion and glucose uptake determination with 11C-methyl- glucose and dynamic positron emission tomography. In: Positron emission tonography of the brain. Heiss WD, Phelps ME, (eds), Berlin, Springer Verlag, pp 169–180, 1983.

    Google Scholar 

  45. Gjedde A, Diemer NH, Autoradiographic determination of regional brain glucose content. J. Cereb. Blood Flow Metabol. 3: 303, 1983.

    Article  CAS  Google Scholar 

  46. Gjedde A, Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: A reexamination. Brain Res. 4: 237, 1982.

    Article  CAS  Google Scholar 

  47. Tewson TJ, Welch MJ, Raichle ME, (18F) -labeled 3-deoxy-3-fluoro-D- glucose: Synthesis and preliminary biodistribution data. J. nucl. Med. 19: 1339, 1978.

    PubMed  CAS  Google Scholar 

  48. Goodman MM, Elmaleh DR, Kearfott KJ, Ackerman RH, Hoop B, Brownell GL, Alpert NM, Strauss HW, F-18-labeled 3-deoxy-3-fluoro-D-glucose for the study of regional metabolism in the brain and heart. J. nucl. Med. 22: 138, 1981.

    PubMed  CAS  Google Scholar 

  49. Knust EJ, Machulla HJ, Dutschka K, 18F-labelling with water target produced 18F. Synthesis and quality control of 18F-3-deoxy-3-fluoro-D-glucose. Radiochem. Radioanal. Lett. 55: 21, 1982.

    CAS  Google Scholar 

  50. Knust EJ, Machulla HJ, Dutschka K, Molls M, Kafka C, Graebe KJ, 18F-3-Desoxy-3-fluor-D-glukose als potentieller Tracer für die Hirn- und Herzdiagnostik Synthese und tierexperimentelle Untersuchungen. NucCompact 14: 40, 1983.

    CAS  Google Scholar 

  51. Holder JE, Gatley SJ, Koeppe RA, Halama JR, Polcyn RA, Tomographic measurement of unidirectional transport rate of glucose across the blood-brain barrier. J.Cereb. Blood Flow Metabol. 3 (suppl. 1) pp S476–S477, 1983.

    Google Scholar 

  52. Fowler JS, Lade RE, MacGregor RR, Shiue C, Wan CN, Wolf AP, Agents for the armamentarium of regional metabolic measurement in vivo via metabolic trapping: 11C-2-deoxy-D-glucose and halogenated deoxy-glucose derivatives. J. Lab. Corp. Radiopham. 16: 7, 1979 (abstract).

    CAS  Google Scholar 

  53. Kloster G, Laufer P, Stöcklin G, D-glucose derivatives labelled with 75,77 Br and 123I. J. Lab. Corp. Radiopharm. 20: 391, 1983.

    Article  CAS  Google Scholar 

  54. Zhou YG, Shiue CY, Wolf AP, Arnett CD, Syntheses and biodistributian of (Br-82) -2-deoxy-2-bromo-D-glucose and (Br-82) -2-deoxy-2-bromo-D-mannose. J. nucl. Med. 23: 105, 1982 (abstract).

    Google Scholar 

  55. Kloster G, Laufer P, Wutz W, Stöcklin G, 75, 77Br- and 123I-analogues of D-glucose as potential tracers for glucose utilisation in heart and brain. Eur. J. Nucl. Med. 8: 237, 1983.

    Article  PubMed  CAS  Google Scholar 

  56. Honma Y, Murase Y, Ishii M, Brain uptake of halogenated products of D-glucal. J. Radioanal. Chan. 76: 283, 1983.

    Article  Google Scholar 

  57. Levy S, Livni E, Elmaleh DR, Varnum DA, Brownell GL, 2-Deoxy-2-(18F) fluoro-3-0-methyl-D-glucose. Synthesis and animal biodistribution studies. Int. J. appl. Radiat. Isot. 34: 1560, 1983.

    Article  PubMed  CAS  Google Scholar 

  58. Hansch C, Stewart AR, Anderson SM, Bentley D, The parabolic dependence of drug action upon lipophilic character as revealed by the study of hypnotics. J. Med. Chem. 11: 1, 1968.

    Article  PubMed  CAS  Google Scholar 

  59. Oldendorf WH, Lipid solubility and drug penetration of the blood brain barrier. Proc. Soc. exp. Biol. Med. 147: 813, 1974.

    PubMed  CAS  Google Scholar 

  60. Dischino DD, Welch MJ, Kilbourn MR, Raichle ME, Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. J. nucl. Med. 24: 1030, 1983.

    CAS  Google Scholar 

  61. Eckelman VC, Receptor-specific radiopharmaceuticals. In: Computed emission tomography. Ell PJ, Holman BL, (eds), Oxford University Press, Oxford, pp 263–284, 1982.

    Google Scholar 

  62. Eckelman VJC, Reba RC, Gibson RE, Rzeszotarski WJ, Vieras F, Mazaitis JK, Francis B, Receptor-binding radiotracers: A class of potential radiopharmaceuticals. J. nucl. Med. 20: 350, 1979.

    PubMed  CAS  Google Scholar 

  63. Blessing G, Weinreich R, Qaim SM, Stöcklin G, Production of 75Br and 77Br via the 75AS (3He,3n) 75Br and 75As (α,2n) 77Br reactions using Cu3As-allow as a high-current target material. Int. J. appl. Radiat. 33: 333, 1982.

    Article  CAS  Google Scholar 

  64. Coenen HH, Moerlein SM, Stöcklin G, No-carrier added radiohalogenation methods with heavy halogens. Radiochim. Acta (in press).

    Google Scholar 

  65. Kook CS, Reed MF, Digenis GA, Preparation of (18F) haloperidol. J. Med. Chem. 18: 533, 1975.

    Article  PubMed  CAS  Google Scholar 

  66. Digenis GA, Vincent SH, Kook CS, Reiman RE, Russ GA, Tilbury RS, Tissue distribution studies of (18F) haloperidol, (18F) -β- (4-fluoro- benzoyl) propionic acid, and (82Br)bramperidol by external scintigraphy.

    Article  PubMed  CAS  Google Scholar 

  67. Tewson TJ, Raichle ME, Welch MJ, Preliminary studies with (18F) haloperidol: A radioligand for in vivo studies of the dopamine receptors. Brain Res. 192: 291, 1980.

    Article  PubMed  CAS  Google Scholar 

  68. Zanzonico PB, The development of (carbon-11) -alpha-amino-isobutyric acid and (fluorine-18) -haloperidol as substrate-specific radiotracers. Ph.D. Thesis, Cornell Univ. Medical College, 1982.

    Google Scholar 

  69. Zanconico PB, Bigler RE, Small B, Neuroleptic binding sites: Specific labeling in mice with (18F) haloperidol, A potential tracer for positron emission tomography. J. nucl. Med. 24: 408, 1983.

    Google Scholar 

  70. Welch MJ, Kilbourn MR, Mathias CJ, Mintun MA, Raichle ME, Comparison in animal models of 18F-spiroperidol and 18F-haloperidol: Potential agents for imaging the dopamine receptor. Life Sci. 33: 1687, 1983.

    Article  PubMed  CAS  Google Scholar 

  71. Fowler JS, Arnett CD, Wolf AP, MacGregor RR, Norton EF, Findley AM, (11C) Spiroperidol: Synthesis, specific activity determination, and biodistribution in mice. J. nucl. Med. 23: 437, 1982.

    PubMed  CAS  Google Scholar 

  72. Arnett CD, Fcwler JS, Wolf AP, MacGregor RR, Specific binding of (11C) spiroperidol in rat brain in vivo. J. Neurochem. 40: 455, 1983.

    Article  PubMed  CAS  Google Scholar 

  73. Wolf AP, Watanabe M, Shiue CY, Salvadori P, Fowler JS, No-carrier- added (nca) 18F-spiroperidol. J. nucl. Med. 24: 52, 1983 (abstract).

    Google Scholar 

  74. Arnett CD, Shiue CY, Wolf AP, Fowler JS, Logan J, Comparative evalua-tion by positron emission tomography of three 18F-labeled butyrophenone neuroleptic drugs in the baboon. J. Neurochem. (submitted for publication).

    Google Scholar 

  75. Wagner HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ, Imaging dopamine receptors in the human brain by positron tomography. Science 221: 1264, 1983.

    Article  PubMed  CAS  Google Scholar 

  76. Kulmala HK, Huang CC, Dinerstein RJ, Friedman AM, Specific in vivo binding of 77Br-p-bromospiroperidol in rat brain: A potential tool for gamma ray imaging. Life Sci. 28: 1911, 1981.

    Article  PubMed  CAS  Google Scholar 

  77. Friedman AM, Huang CC, Kulmala HK, Dinerstein R, Navone J, Brunsden B, Gawlas D, Cooper M, The use of radiobrominated p-bromospiroperidol for γ-ray imaging of dopamine receptors. Int. J. Nucl. Med. Biol. 9: 57, 1982.

    Article  PubMed  CAS  Google Scholar 

  78. DeJesus OT, Friedman AM, Prasad A, Revenaugh JR, Preparation and purification of 77Br-labelled p-bromospiroperidol suitable for in vivo dopamine receptor studies. J. Lab. Comp. Radiopharm. 20: 745, 1983.

    Article  CAS  Google Scholar 

  79. Owen F, Poulter M, Mashal RD, Crow TJ, Veall N, Zanelli GD, 77Br-p-bromospiperone: A ligand for in vivo labelling of dopamine receptors. Life Sci. 33: 765, 1983.

    Article  PubMed  CAS  Google Scholar 

  80. Crawley JCW, Smith T, Veall N, Zanelli GD, Crew TJ, Owen F, Dopamine receptors displayed in living human brain with 77Br-p-bromospiperone. Lancet 975, 1983.

    Google Scholar 

  81. Moerlein SM, Stöcklin G, Synthesis of no-carrier-added 75, 77Br-benperidol: A potential radiopharmaceutical for quantitating cerebral dopamine receptors. J. nucl. Med. 24: 42, 1983 (abstract).

    Google Scholar 

  82. Moerlein SM, Stocklin G, Specific in vivo binding of 77Br-brombenperidol in rat brain. Life Sci. (submitted for publication).

    Google Scholar 

  83. Crouzel C, Mestelan G, Kraus E, Lecomte JM, Ccmar D, Synthesis of a 11C -labelled neuroleptic drug: pimozide. Int. J. appl. Radiat. Isot. 31: 545, 1980.

    Article  PubMed  CAS  Google Scholar 

  84. Baron JC, Ccmar D, Zarifian E, Crouzel C, Mestelan G, Loo H, Agid Y, An in vivo study of the dopaminergic receptors in the brain of man using 11C-pimozide and positron emission tomography. In: Functional radionuclide imaging of the brain. Magistretti PL (ed), Raven Press, New York, pp 337–345, 1983.

    Google Scholar 

  85. Reiffers S, Berling-Van der Molen HD, Vaalburg W, Ten Hoeve W, Paans AMJ, Korf J, Woldring MG, Wynberg H, Rapid synthesis and purification of carbon-11 labelled DOPA: A potential agent for brain studies. Int. J. appl. Radiat. Isot. 28: 955, 1977.

    Article  PubMed  CAS  Google Scholar 

  86. Bolster JM, Vaalburg W, Van Veen W, Van Dijk T, Van der Molen HD, Wynberg H, Woldring MG, Synthesis of no-carrier-added L- and D- (1-11C)-DOPA. Int. J. appl. Radiat. Isot. 34: 1650, 1983.

    Article  PubMed  CAS  Google Scholar 

  87. Korf J, Reiffers S, Beerling-Van der Molen HD, Lakke JPWF, Paans AMJ, Vaalburg W, Woldring MG, Rapid decarboxylation of carbon-11 labelled DL-DOPA in the brain: A potential approach for external detection of nervous structures. Brain Res. 145: 59, 1978.

    Article  PubMed  CAS  Google Scholar 

  88. Firnau G, Chirakal R, Sood S, Garnett S, Aromatic fluorination with xenon difluoride: L-3,4-dihydroxy-6-fluoro-phenylalanine. Canad. J. Chem. 58: 1449, 1980.

    Article  CAS  Google Scholar 

  89. Garnett ES, Firnau G, Nahmias C, Dopamine visualized in the basal ganglia of living man. Nature 305: 137, 1983.

    Article  PubMed  CAS  Google Scholar 

  90. Garnett S, Firnau G, Nahmias C, Chirakal R, Striatal dopamine metabolism in living monkeys examined by positron emission tomography. Brain Res. 280: 169, 1983.

    Article  PubMed  CAS  Google Scholar 

  91. Berridge M, Comar D, Crouzel C, Baron JC, 11C-labelled ketanserin: A selective serotonin S2 antagonist. J. Lab. Camp. Radiopharm. 20: 73, 1983.

    Article  CAS  Google Scholar 

  92. Kloster G, Hanus J, Voges R, Stöcklin G, 11C-Mesulergin, a potential agent for mapping the serotonin receptor: synthesis and animal experiments. J. Lab. Comp. Radiopharm. (in press, abstract).

    Google Scholar 

  93. Comar D, Maziere M, Godot JM, Berger G, Soussaline F, Menini C, Arfel G, Naquet R, Visualization of 11C-f lunitrazepam displacement in the brain of the live baboon. Nature 280: 329, 1979.

    Article  PubMed  CAS  Google Scholar 

  94. Maziere M, Prenant C, Sastre J, Crouzel M, Comar D, Hantraye P, Kaisima M, Gulbert B, Naquet R, 11C-Ro 15-1788 et 11C-flunitrazepam, deux coordinats pour l’étude par tomographie par positrons des sites de liason des benzodiazépines. C.R. Acad. Sci. Paris 296: 871 1983.

    CAS  Google Scholar 

  95. Scholl H, Kloster G, Stöcklin G, Bromine-75-labeled 1, 4-benzodiazepines: potential agents for the mapping of benzodiazepine receptors in vivo: concise communication. J. nucl. Med. 24: 417, 1983.

    PubMed  CAS  Google Scholar 

  96. Rzeszotarski WJ, Gibson RE, Eckelman VC, Simms DA, Jagoda EM, Ferreira NL, Reba RC, Analogues of 3-quinuclidinyl benzilate. J. Med. Chem. 25: 1103, 1982.

    Article  PubMed  CAS  Google Scholar 

  97. Drayer B, Jaszczak R, Coleman E, Storni A, Greer K, Petry N, Lischko M, Flanagan S, Muscarinic cholinergic receptor binding: In vivo depiction using single photon emission computed tomography and radio- iodinated quinuclidinyl benzilate. J. Comput. Assist. Tonogr. 6: 536, 1982.

    Article  CAS  Google Scholar 

  98. Eckelman VIC, Reba RC, Rzeszotarski WJ, Gibson RE, Hill T, Holman BL, Budinger T, Conklin JJ, Eng R, Grissom MP, External imaging of cerebral muscarinic acetylcholine receptors. Science 223: 291, 1984.

    Article  PubMed  CAS  Google Scholar 

  99. Gibson RE, Weckstein DJ, Jagoda EM, Rzeszotarski WJ, Reba RC, Eckelman WC, The characteristics of I-125 4-IQNB and H-3 QNB in vivo and in vitro. J. nucl. Med. 25: 214, 1984.

    PubMed  CAS  Google Scholar 

  100. Closse A, (3H) Mesulergine, a selective ligand for serotonin-2-receptors. Life Sci. 32:2485, 1983.

    Article  PubMed  CAS  Google Scholar 

  101. Selikson M, Gibson RE, Eckelman WC, Reba RC, Calculation of binding isotherms when ligand and receptor are in different volumes of distribution. Ann. Biochem. 108: 64, 1980.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Kloster, G., Stöcklin, G. (1985). New Agents for Probing Glucose Turnover and Receptor Densities in the Brain. In: Cox, P.H., Limouris, G., Woldring, M.G. (eds) Progress in radiopharmacology 1985. Developments in Nuclear Medicine, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5028-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5028-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8727-8

  • Online ISBN: 978-94-009-5028-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics