Skip to main content

Myocardial Ischemia: A Profile of its Pathophysiological Basis and its Detection by Nuclear Cardiology

  • Chapter
Radioisotope studies in cardiology

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 8))

Abstract

As a muscular pump with the specific task of ensuring the optimal circulation of blood under the most variable conditions, the heart continuously consumes energy at a very high rate. A large quantity of high energy phosphates are produced continuously to meet its specific requirements which makes a normal oxygen and substrate delivery, removal of wastage and an undisturbed cellular metabolism essential. During myocardial ischemia however, myocardial blood-flow and hence the oxygen and substrate supply is reduced. Due to diminished venous efflux from the ischemic area metabolic endproducts accumulate and myocardial metabolism and function quickly deteriorates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubio R, Berne RM, Release of adenosine by the normal myocardium in dogs and its relationship to the regulation of coronary resistance. Circ. Res. 25: 407, 1969.

    PubMed  CAS  Google Scholar 

  2. Rubio R, Berne RM, Dobson JG, jr, Sites of adenosine production in cardiac and skeletal muscle. Amer. J. Physiol. 225: 938, 1973.

    PubMed  CAS  Google Scholar 

  3. Berne RM, Rubio R, Regulation of coronary bloodflow. Advanc. Cardiol. 12: 303, 1974.

    CAS  Google Scholar 

  4. Olsson RA, Davis CJ, Khouri EM, Patterson RE, Evidence for an adenosine receptor on the surface of dog coronary myocytes. Circulat. Res. 39: 93, 1976.

    PubMed  CAS  Google Scholar 

  5. Olsson RA, Changes in content of purine nucleosides in canine myocardium during coronary occlusion. Circulat. Res. 26: 301, 1970.

    PubMed  CAS  Google Scholar 

  6. Fox AC, Reed GE, Glassman E, et al, Release of adenosine from human hearts during angina induced by rapid atrial pacing. J. Clin. Invest. 53: 1447, 1974.

    Article  PubMed  CAS  Google Scholar 

  7. De Jong JW, Verdouw PD, Remme WJ, Myocardial nucleoside and carbohydrate metabolism and hemodynamics during partial occlusion and reperfusion of pig coronary artery. J. Mol. Cell. Cardiol. 9: 297, 1977.

    Article  PubMed  Google Scholar 

  8. Remme WJ, De Jong JW, Verdouw PD, Effects of pacing induced myocardial ischemia on hypoxanthine efflux from the human heart. Amer. J. Cardiol. 40: 55, 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Remme WJ, De Jong JW, Verdouw PD, Changes in purine nucleoside content in human myocardial efflux during pacing-induced ischemia. In: Recent advances in studies on cardiac structure and metabolism. Vol. 12: Cardiac adaptation. Kobrynski T, Ito Y, Rowa G, (eds), University Park Press, Baltimore, p 409, 1978.

    Google Scholar 

  10. Kugler G, Myocardial release of lactate, inosine and hypoxanthine during atrial pacing and exercise-induced angina. Circulation 59: 43, 1979.

    PubMed  CAS  Google Scholar 

  11. Schaper W, Regulation of coronary bloodflow. In: The pathophysiology of myocardial perfusion. Schaper W, (ed), Elsevier/North-Holland Biomedical Press, Amsterdam, p 181, 1979.

    Google Scholar 

  12. Bretschneider HJ, Die hemodynamische Determinanten des myokardialen Sauerstoff verbrauchs. In: Die therapeutische Anwendung sympathicolytischer Stoffe. Dengler (ed), Schattauer Verlag, Stuttgart, 1972.

    Google Scholar 

  13. Opherk D, Zebe H, Weihe E, Mall G, Dürr C, et al, Reduced coronary dilatory capacity and ultrastructural changes of the myocardium in patients with angina pectoris but normal coronary arteriograms. Circulation 63: 817, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Gould KL, Lipscomb K, Hamilton GW, Physiology basis for assessing critical coronary stenosis. Amer. J. Cardiol. 33: 87, 1974.

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz JS, Carlyle PF, Cohn JN, Decline in bloodflow in stenotic coronary arteries during increased myocardial energetic demand in response to pacing induced tachycardia. Amer. Heart J. 101: 435, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Schaper W, Lewi P, Flameng W, et al, Myocardial steal produced by coronary vasodilatation in chronic coronary artery occlusion. Basic Res. Cardiol. 68: 3, 1973.

    Article  PubMed  CAS  Google Scholar 

  17. Becker LC, Conditions for vasodilator-induced coronary steal in experimental myocardial ischemia. Circulation 57: 1103, 1978.

    PubMed  CAS  Google Scholar 

  18. McKeever WP, Gregg DE, Canney PC, Oxygen uptake of the non-working left ventricle. Circulat. Res. 6: 612, 1958.

    PubMed  CAS  Google Scholar 

  19. Prinzmetal M, Kennamer R, Merliss R, et al, Angina pectoris, I. A variation form of angina pectoris. Amer. J. Med. 27: 375, 1959.

    Article  PubMed  CAS  Google Scholar 

  20. Maseri A, Chierchia S, Coronary artery spasm: Demonstration, definition, diagnosis and consequences. Progr. cardiovasc. Dis. 25, no. 3: 169, 1982

    Article  CAS  Google Scholar 

  21. Vatner SF, Alpha-adrenergic regulation of the coronary circulation in the conscious dog. Amer. J. Cardiol. 52, no. 2: 15a, 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Hamberg M, Svensson J, Samuelsson B, Thromboxanes: A new group of biologically active compounds derived from prostaglandin enderoperoxides. Proc. nat. Acad. Sci. USA. 72: 2994, 1975.

    Article  PubMed  CAS  Google Scholar 

  23. Moncada S, Vane JR, Unstable metabolites of arachidonic acid and their role in haemostasis and thrombosis. Brit. Med. Bull. 34: 129, 1978.

    PubMed  CAS  Google Scholar 

  24. Martin IJ, Smith IL, Noland RD, et al, Prostanoids in platelet-vascular interactions. Amer. J. Cardiol. 52, no. 2: 22a, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Dalen JE, Ockene MD, Alpert JS, Coronary spasm, coronary thrombosis and myocardial infarction. A hypothesis concerning the pathophysiology of acute myocardial infarction. Amer. Heart J, 104: 1119, 1982.

    Article  PubMed  CAS  Google Scholar 

  26. Liedtke AJ, Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Progr. cardiovasc. Dis. 23, no. 5: 321, 1981.

    Article  CAS  Google Scholar 

  27. Spitzer JJ, Effect of lactate infusion on canine free fatty acid metabolism in vivo. Amer. J. Physiol. 226: 213, 1974.

    PubMed  CAS  Google Scholar 

  28. Stein O, Stein Y, Lipid synthesis, intracellular transport and storage. J. Cell. Biology 36: 62, 1968.

    Article  Google Scholar 

  29. Vasdev SC, Kako KJ, Incorporation of fatty acids into rat heart lipids. In vivo and in vitro studies. J. Mol. Cell. Cardiol. 9:617, 1977.

    Article  PubMed  CAS  Google Scholar 

  30. Kobayaski K, Neely JR, Control of maximum rates of glycolysis in rat cardiac muscle. Circulat. Res. 44: 166, 1979.

    Google Scholar 

  31. Idell-Wenger JA, Neely JR, Effects of ischemia on myocardial fatty acid oxidation. In: Pathophysiology and therapeutics of myocardial ischemia. Lefer AM, Kelliher GJ, Rovetto MJ (eds), Spectrum Publications, New York, pp 227–238, 1976.

    Google Scholar 

  32. Opie LH, Effects of regional ischemia on metabolism of glucose and fatty acids. Circulat. Res. (suppl. 1) 38: 52, 1976.

    Google Scholar 

  33. Whitmer JT, Idell-Wenger JA, Rovetto MJ, et al, Control of fatty acid metabolism in ischemic and hypoxic heart. J. biol. Chem. 253: 4305, 1978.

    PubMed  CAS  Google Scholar 

  34. Shrago E, Shug AL, Sul H, Bittar N, et al, Control of energy production in myocardial ischemia. Circulat. Res. (suppl. 1) 38: 75, 1976.

    Google Scholar 

  35. Wood JM, Bush B, Pitts BJR, et al, Inhibition of bovine heart Na+, K+-ATP-ase by palmitylcarnitine and palmityl-CA. Biochem. biophys. Res. Commun. 74: 677, 1977.

    Article  PubMed  CAS  Google Scholar 

  36. Cohen D, Wang T, Sumida M, et al, Effect of palmitylcarnitine on cardiac and skeletal sarcoplasmatic reticulum. Fed. Proc. 37: 376, 1978.

    Google Scholar 

  37. Borst P, Loos JA, Christ EJ, et al, Uncoupling activity of long-chain fatty acids. Biochim. biophys. Acta 62: 509, 1962.

    Article  PubMed  CAS  Google Scholar 

  38. Pande SV, Mead JF, Inhibition of enzyme activities by free fatty acids. J. biol. Chem. 243: 6180, 1968.

    PubMed  CAS  Google Scholar 

  39. Cornblath M, Randle PJ, Parmeggiani, et al, Regulation of glyco-genolysis in muscle: Effects of glucagon and anoxia on lactate production, glycogen content and Phosphorylase activity in the perfused rat heart. J. biol. Chem. 2339: 1592, 1963.

    Google Scholar 

  40. Braasch W, Cubjarnason S, Puri PS, et al, Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anesthetized dogs. Circulat. Res. 23: 429, 1968.

    PubMed  CAS  Google Scholar 

  41. Remme WJ, Krauss XH, Storm CJ, et al, Improved assessment of lactate production during pacing-induced ischemia. J. Mol. Cell. Cardiol. 13: 76, 1981.

    Google Scholar 

  42. Rovetto MJ, Neely JR, Carbohydrate metabolism during ischemia. In: Pathophysiology and therapeutics of myocardial ischemia. Lefer AM, Kelliher GJ, Rovetto MJ, (eds), Spectrum Publications, New York, 1976.

    Google Scholar 

  43. Mochizuki S, Neely JR, Control of glyceraldehyde-3-phosphate dehydrogenase in cardiac muscle. J. Mol. Cell. Cardiol. 11: 221, 1979.

    Article  PubMed  CAS  Google Scholar 

  44. Katz AM, Mechanism and control of the cardiac contractile process. In: Physiology of the heart. Katz AM (ed), Raven Press, New York, 1977.

    Google Scholar 

  45. Dudel J, Rudel R, Voltage and time dependence of excitatory sodium current in cooled sheep fibers. Pflügers Eur. J. Phys. Arch. 315: 136, 1970.

    Article  CAS  Google Scholar 

  46. Beeler GW, jr, Reuter K, Voltage clamp experiments on ventricular myocardial fibers. J. Physiol. 207: 165, 1970.

    PubMed  Google Scholar 

  47. Langer GA, Effects of digitalis on myocardial ionic exchange. Circulation 46: 180, 1972.

    PubMed  CAS  Google Scholar 

  48. Zimmer L, McCall D, D’Addabbo L, et al, Kinetics and characteristics of Thallium exchange in cultured cells. Circulation 59–60 11: 138, 1979.

    Google Scholar 

  49. Keung ECK, Aronson RS, Physiology of calcium current in cardiac muscle. Progr. cardiovasc. Dis. 25: 279, 1983.

    Article  CAS  Google Scholar 

  50. Katz AM, Calcium fluxes during excitation-contraction coupling. In: Physiology of the heart. Katz AM (ed), Raven Press, New York, 1977.

    Google Scholar 

  51. Boucher CA, Zir LM, Beller CA, et al, Increased lung uptake of Thallium-201 during exercise myocardial imaging: Clinical, hemodynamic and angiographic implications in patients with coronary artery disease. Amer. J. Cardiol. 46: 189, 1980.

    Article  PubMed  CAS  Google Scholar 

  52. Katz AM, Effects of ischemia on the contractile processes of heart muscle. Amer. J. Cardiol. 32: 456, 1973.

    Article  PubMed  CAS  Google Scholar 

  53. Schwartz A, Wood JM, Allen JC, et al, Biochemical and morphologic correlates of cardiac ischemia. I. Membrane systems. Amer. J. Cardiol. 32: 46, 1973.

    Article  PubMed  CAS  Google Scholar 

  54. Leaf A, Cell swelling, a factor in ischemic injury. Circulation 48: 455, 1973.

    PubMed  CAS  Google Scholar 

  55. Braasch W, Gubjarnason S, Puri PS, Ravens KB, Bing RJ, Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anesthetized dogs. Circulat. Res. 23: 429, 1968.

    PubMed  CAS  Google Scholar 

  56. Jennings RB, Reimer KA, Biology of experimental, acute myocardial ischemia and infarction. In: Enzymes in cardiology, diagnosis and research. Hearse DJ, De Leiris J, (eds), John Wiley and Sons, Chichester, p 35, 1979.

    Google Scholar 

  57. Reimer KA, Lowe JE, Rasmussen MM, et al, The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size vs duration of coronary artery occlusion in dogs. Circulation 56: 786, 1977.

    PubMed  CAS  Google Scholar 

  58. Jennings RB, Reimer KA, Biology of experimental, acute myocardial ischemia and infarction. In: Enzymes in cardiology, diagnosis and research. Hearse DJ, De Leirus J, (eds), John Wiley and Sons, Chichester, pp 50–51, 1979.

    Google Scholar 

  59. Domenech RJ, Hoffman JIE, Noble MIM, et al, Total and regional coronary bloodflow measured by radioactive microspheres in conscious and anesthetized dogs. Circulat. Res. 25: 581, 1969.

    PubMed  CAS  Google Scholar 

  60. Ashburn WL, Braunwald E, Simon AL, et al, Myocardial perfusion imaging with radioactive labelled particles injected directly into the coronary circulation of patients with coronary artery disease. Circulation 44: 851, 1971.

    PubMed  CAS  Google Scholar 

  61. Weller DA., Adolph RJ, Wellman HN, et al, Myocardial perfusion scintigraphy after intracoronary injection of Tc-99m-labelled human albumin microspheres. Circulation 46: 963, 1972.

    PubMed  CAS  Google Scholar 

  62. Jansen C, Judkins MP, Grames GM, et al, Myocardial perfusion color scintigraphy with MMA. Radiology 109: 369, 1973.

    PubMed  CAS  Google Scholar 

  63. Ritchie JL, Hamilton GW, Gould KL, et al, Myocardial imaging with Indium-113m and Technetium-99m-macroaggregated albumin. Amer. J. Cardiol. 35: 380, 1975.

    Article  PubMed  CAS  Google Scholar 

  64. Bing RJ, Hammond MM, Jandelsman JC, et al, Measurement of coronary bloodflow, oxygen consumption and efficiency of the left ventricle in man. Amer. Heart J. 38: 1, 1949.

    Article  PubMed  CAS  Google Scholar 

  65. Rau C, Messung der Koronardurchblutung mit der Argon-Fremdgasmethode. Arch. Kreisl. Forsch. 58: 322, 1969.

    Article  CAS  Google Scholar 

  66. Tauchert M, Kochsiek K, Heiss HW, et al, Measurement of coronary bloodflow in man by the argon method. In: Myocardial bloodflow in man. Maseri A, (ed), Minerva Medica, Turin, p 139, 1972.

    Google Scholar 

  67. Pitt A, Friesinger GC, Ross RS, Measurement of bloodflow in the right and left coronary artery beds in humans and dogs using the 133 Xenon technique. Cardiovasc. Res. 3: 100, 1969.

    Article  PubMed  CAS  Google Scholar 

  68. Cannon PL, Dell RB, Dwyer EM, jr, Measurement of regional myocardial perfusion in man with 133 Xenon and a scintillation camera. J. clin. Invest. 51: 964, 1972.

    Article  PubMed  CAS  Google Scholar 

  69. Engel HJ, Assessment of regional myocardial bloodflow by the precordial 133 Xenon clearance technique. In: The pathophysiology of myocardial perfusion. Schaper W, (ed), Elsevier/North-Holland Biomedical Press, Amsterdam, p 58, 1979.

    Google Scholar 

  70. Mclntyre WJ, Cannon PJ, Ashburn WL, Measurement of regional myocardial perfusion. In: Quantitative nuclear cardiology. Pierson RH, jr, Kriss JP, Jones RH, Mclntyre WJ, (eds), Wiley and Sons, New York, p 170, 1975.

    Google Scholar 

  71. Cannon PJ, Measurements of regional myocardial perfusion by intracoronary injection of xenon-133. In: Clinical nuclear cardiology. Berman DS, Mason DI, Grune and Stratton, New York, p 119, 1981.

    Google Scholar 

  72. Kaplan E, Mayron LW, Friedman AM, Gindler JE, Frazin L, Moran JM, Loeb H, Gunnar RM, Definition of myocardial perfusion by continuous infusion of Krypton-81m. Amer. J. Cardiol. 37: 878, 1976.

    Article  PubMed  CAS  Google Scholar 

  73. Selwyn AP, Jones T, Turner JH, Pratt T, Clark J, Lavender P, Contiuous assessment of regional myocardial perfusion in dogs using Krypton-81m. Circulat. Res. 42: 771, 1978.

    PubMed  CAS  Google Scholar 

  74. Selwyn AP, Steiner R, Kivisaari A, Fox KM, Forse G, Krypton-81m in the physiologic assessment of coronary artery stenosis in man. Amer. J. Cardiol. 43: 547, 1979.

    Article  PubMed  CAS  Google Scholar 

  75. Selwyn AP, Forse G, Fox KM, Jonathan A, Steiner R, Pattern of disturbed myocardial perfusion in patients with coronary artery disease. Circulation 64: 83, 1981.

    Article  PubMed  CAS  Google Scholar 

  76. Remme WJ, Cox PH, Krauss XH, Continuous myocardial bloodflow distribution imaging in man with Krypton-81m intracoronary (abstract). Amer. J. Cardiol. 49: 979, 1982.

    Article  Google Scholar 

  77. Remme WJ, Kruyssen HA, Cox PH, Krauss XH, Assessment of functionally significant coronary artery disease during continuous intracoronary administration of Krypton-81m. Eur. Heart J. 4: 32, 1983.

    Google Scholar 

  78. Remme WJ, Cox PH, Krauss XM, et al, Continuous myocardial bloodflow imaging with Krypton-81m selective intracoronary. In: Radioisotopes in Cardiology. Salvatore M, Porta E, (eds), Plenum Press, New York, p 155, 1983.

    Google Scholar 

  79. Remme WJ, Cox PH, Krauss XH, Visualization of myocardial blood-flow changes with intracoronary 81m Kr (this volume).

    Google Scholar 

  80. Lebowitz E, Greene MW, Bradley-Moore P, et al, Tl-201 for medical use. J. nucl. Med. 14: 421, 1973.

    Google Scholar 

  81. Pohost GM, Zir LM, Moor RK, et al, Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of Tl-201. Circulation 55: 294, 1977.

    PubMed  CAS  Google Scholar 

  82. Beller GA, Pohost GM, Mechanism for Tl-201 redistribution after transient myocardial ischemia. Circulation 56: 141, 1977.

    Google Scholar 

  83. Ritchie JL, Zaret BL, Strauss HW, et al, Myocardial imaging with Thallium-201: A multicenter study in patients with angina pectoris or acute myocardial infarction. Amer. J. Cardiol. 42: 345, 1978.

    Article  PubMed  CAS  Google Scholar 

  84. Berman DS, Garcia EV, Maddahi J, Thallium-201 myocardial scintigraphy in the detection and evaluation of coronary artery disease. In: Clinical nuclear cardiology. Berman DS, Mason DT, Grune and Stratton, New York, p 49, 1981.

    Google Scholar 

  85. Winkler B, Schaper W, Tracer kinetics of Thallium, a radionuclide used for cardiac imaging. In: The pathophysiology of myocardial perfusion. Schaper W (ed), Elsevier/North-Holland Biomedical Press, Amsterdam, p 102, 1979.

    Google Scholar 

  86. Glaser J, Crystal and molecular structure of trisodium hexachlorothallium (111) and dodekahydrate, Na3TlCl612H2O. Acta Chem. Scand. a34: 141, 1980.

    Article  CAS  Google Scholar 

  87. Cox PH, The comparative radiopharmacology of Thallium-201 in relation to potassium. In: Progress in Radiopharmacology. Cox PH, (ed), Elsevier /North-Holland Biomedical Press, Amsterdam, p 19, 1981.

    Google Scholar 

  88. Maddahi J, Garcia EV, Berman DS et al, Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of Thallium-201. Circulation 64: 924, 1981.

    Article  PubMed  CAS  Google Scholar 

  89. Vogel RA, Kirck DL, Lefree MF, et al, Thallium-201 myocardial perfusion scintigraphy: Results of standard and multi-pinhole tomographic techniques. Amer. J. Cardiol. 43: 787, 1979.

    Article  PubMed  CAS  Google Scholar 

  90. Selwyn AP, Allan RM, l’Abbate A, et al, Relation between regional myocardial uptake of Rubidium-82 and perfusion: Absolute reduction of cation uptake in ischemia. Amer. J. Cardiol. 50: 112, 1982.

    Article  PubMed  CAS  Google Scholar 

  91. Phelps ME, Hoffman EJ, Coleman RE, et al, Tomographic images of bloodpool and perfusion in brain and heart. J. nucl. Med. 17: 603, 1976.

    PubMed  CAS  Google Scholar 

  92. Schelbert HR, Phelps ME, Hoffman EJ, et al, Regional myocardial perfusion assessed with N-13 labelled ammonia and positron emission computerized axial tonography. Amer. J. Cardiol. 43: 209, 1979.

    Article  PubMed  CAS  Google Scholar 

  93. Ter Pogossian MM, The assessment of myocardial integrity by positron emission computerized tomography. In: The pathophysiology of myocardial perfusion. Schaper W, (ed), Elsevier/North-Holland Biomedical Press, Amsterdam, p 113, 1979.

    Google Scholar 

  94. Davidson S, Sonnenblick EH, Glutamine production by the isolated perfused rat heart during ammonium chloride perfusion. Cardiovasc. Res. 9: 295, 1975.

    Article  PubMed  CAS  Google Scholar 

  95. Chazov E, Smirnov VN, Mazaev AV, et al, Myocardial ammonia metabolism in patients with heart disease as revealed by coronary sinus catheterization study. Circulation 47: 1327, 1973.

    PubMed  CAS  Google Scholar 

  96. Bergmann SR, Hack S, Tewson T, et al, The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation 61: 34, 1980.

    PubMed  CAS  Google Scholar 

  97. Weiss ES, Hoffman EJ, Phelps ME, et al, External detection and visualization of myocardial ischemia with C-substrates in vitro and vivo. Circulat. Res. 39: 24, 1976.

    PubMed  CAS  Google Scholar 

  98. Schelbert HR, Henze E, Phelps ME, et al, Assessment of regional myocardial ischemia by positron-emission computed tomography. Amer. Heart J. 103: 588, 1982.

    Article  PubMed  CAS  Google Scholar 

  99. Schön HR, Schelbert HR, Najafi A, et al, C-11 labelled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. II. Kinetics of C-11 palmitic acid in acutely ischemic myocardium. Amer. Heart J. 103: 548, 1982.

    Article  PubMed  Google Scholar 

  100. Machulla HJ, Stöcklin G, Kupfernagel C, et al, Comparative evaluation of fatty acids labelled with C-11, CL-34m, Br-77 and J-123 for metabolic studies of the myocardium: concise communication. J. nucl. Med. 19: 298, 1978.

    PubMed  CAS  Google Scholar 

  101. Westera G, Labelled fatty acids. Synthesis and biological behaviour. A review. In: Progress in radiopharmacology. Cox PH, (ed), Elsevier/ North-Holland, Biomedical Press, p 29, 1981.

    Google Scholar 

  102. Freundlieb C, Höck A, Vyska K, et al, Anwendung von I-123 markierten langkettigen Fettsaüren zum Studium des Herzmuskelstoffwechels. In: Radioaktive Isotope in Klinik und Forschung. R. Höfe (ed), Wien, p 265, 1978.

    Google Scholar 

  103. Van der Wall EE, Heidendal GAK, Den Hollander W, et al, 123I labelled hexadecanoic acid in comparison with 201TI for myocardial imaging in coronary heart disease. Eur. J. Nucl. Med. 5: 401, 1980.

    Article  PubMed  Google Scholar 

  104. Feinendegen LE, Vyska K, Freundlieb C, et al, Non-invasive analysis of metabolic reactions in body tissues. The case of myocardial fattt acids. Eur. J. Nucl. Med. 61: 191, 1981.

    Article  Google Scholar 

  105. Dudczak R, Schmoliner R, Angelberger P, et al, Myocardial scintigraphy using 123-I-phenylpentadecanoic acid. In: Radioisotopes in Cardiology. Salvatore M, Porta E, (eds), Plenum Press, New York, p 147, 1983.

    Google Scholar 

  106. Reske SN, Koischwitz D, Machulla KJ, et al, Myocardial extraction fraction and metabolism of W-P-I123-phenylpenta decanoic acid (IPPA) in patients with coronary artery and valvular heart disease. In: Radioisotopes in cardiology. Salvatore M, Porta E, (eds), Plenum Press, New York, p 255, 1983.

    Google Scholar 

  107. Okada RD, Elmalek D, Werre GS, et a,, Myocardial kinetics of 123I labelled 16-hexadecanoic acid. Eur. J. Nucl. Med. 8: 211, 1983.

    Article  PubMed  CAS  Google Scholar 

  108. Visser FC, Westera G, Van der Wall EE, et al, Does the turnover rate of 123I-FFA reflect cardiac FFA metabolism? Eur. Heart J. 4: 92 (suppl E), 1983.

    Google Scholar 

  109. Parkey RW, Bonte FJ, Meyer SL, et al, A new method for radionuclide imaging of acute myocardial infarction in humans. Circulation 50: 540, 1974.

    PubMed  CAS  Google Scholar 

  110. Willerson JT, Parkey RW, Bonte FJ, et al, Acute subendocardial myocardial infarction in patients: Its detection by Technetium-99m stannous pyrophosphate myocardial scintigrams. Circulation 51: 436, 1975.

    PubMed  CAS  Google Scholar 

  111. Holman BL, Tanaka TT, Lesch M, Evaluation of radiopharmaceuticals for the detection of acute myocardial infarction in man. Radiology 121: 427, 1976.

    PubMed  CAS  Google Scholar 

  112. Willerson JT, Parkey RW, Bonte FJ, et al, The use of Technetium-99m stannous pyrophosphate myocardial scintigraphy to establish the presence of acute myocardial necrosis. In: Clinical nuclear cardiology. Berman DS, Mason DT, (eds), Grune and Stratton, New York, p 155, 1981.

    Google Scholar 

  113. Holman BL, Lesch M, Zweiman FG, et al, Detection and sizing of acute myocardial infarcts with Tc-99m-(Sn) tetracycline. New Engl. J. Med. 291: 159, 1974.

    Article  PubMed  CAS  Google Scholar 

  114. Buja LM, Parkey RW, Stokeley EM, et al, Pathophysiology of Technetium-99m stannous pyrophosphate and Thallium-201 scintigraphy of acute anterior myocardial infarcts in dogs. J. Clin. Invest. 57: 1508, 1976.

    Article  PubMed  CAS  Google Scholar 

  115. Buja LM, Tofe AJ, Mukkerjee A, et al, A role of elevated tissue calcium in myocardial infarct scintigraphy with Technetium phosphorus radiopharmaceuticals. Circulation 54: 219 (suppl2), 1976.

    Google Scholar 

  116. Schelbert H, Ingwall J, Sybers H, et al, Uptake of Tc-99m pyrophosphate and calcium in irreversible damaged myocardium. J. nucl. Med. 17: 534, 1976.

    Google Scholar 

  117. Poliner LR, Buja LM, Parkey RW, et al, Comparison of methods of infarcts sizing during myocardial infarction. J. nucl. Med. 18: 517, 1977.

    PubMed  CAS  Google Scholar 

  118. Poliner LR, Hutcheson D, Buja LM, et al, Persistently positive Technetium-99m stannous pyrophosphate myocardial scintigram after acute myocardial infarction. Clin. Res. 25: 7a, 1977.

    Google Scholar 

  119. Willerson JT, Parkey RW, Bonte FJ, et al, Technetium stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation 51: 1046, 1975.

    PubMed  CAS  Google Scholar 

  120. Abdulla AM, Canedo MJ, Cortez BC, et al, Detection of unstable angina by 99m-Technetium pyrophosphate myocardial scintigraphy. Chest 69: 168, 1976.

    Article  PubMed  CAS  Google Scholar 

  121. Poliner LR, Buja ML, Parkey RW, et al, Clinicopathologic findings in 52 patients studied by Technetium-99m stannous pyrophosphate myocardial scintigraphy. Circulation 59: 257, 1979.

    PubMed  CAS  Google Scholar 

  122. Stokely EM, Buja LM, Lewis SE, et al, Measurement of acute myocardial infarcts in dogs with Tc-99m-stannous pyrophosphate scintigrams. J. nucl. Med. 17: 1, 1976.

    PubMed  CAS  Google Scholar 

  123. Willerson JT, Parkey RW, Harris RA, et al, Sizing acute myocardial infarction utilizing Technetium stannous pyrophosphate myocardial scintigrams in dogs and man (abstr) Clin. Res. 23: 214a, 1975.

    Google Scholar 

  124. Strauss HW, Zaret BL, Hurley PJ, et al, A scintigraphic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Amer. J. Cardiol. 28: 575, 1971.

    Article  PubMed  CAS  Google Scholar 

  125. Van Dijke D, Anger HO, Sullivan RW, et al, Cardiac evaluation from radioisotope dynamics. J. nucl. Med. 13: 585, 1972.

    Google Scholar 

  126. Schelbert HR, Verba JW, Johnson AD, et al, Non-traumatic determination of left ventricular ejection fraction by radionuclide angio-cardiography. Circulation 51: 902, 1975.

    PubMed  CAS  Google Scholar 

  127. Berman DS, Salel AF, De Nardo GL, et al, Clinical assessment of left ventricular regional contraction patterns and ejection fraction by high resolution gated scintigraphy. J. nucl. Med. 16: 865, 1975.

    PubMed  CAS  Google Scholar 

  128. Green MV, Ostrow HG, Douglas MA, et al, High temporal resolution ECG-gated scintigraphic angiocardiography. J. nucl. Med. 16: 95, 1975.

    PubMed  CAS  Google Scholar 

  129. Burow RD, Strauss HW, Singleton R, et al, Analysis of left ventricular function from multiple gated acquisition cardiac bloodpool imaging: Comparison to contrast angiography. Circulation 56: 1024, 1977.

    PubMed  CAS  Google Scholar 

  130. Bodenheimer MM, Banka VS, Fooshee CM, et al, Quantitative radionuclide angiography in the right anterior oblique view: Comparison with contrast ventriculography. Amer. J. Cardiol. 41: 718, 1978.

    Article  PubMed  CAS  Google Scholar 

  131. Tobernick E, Schelbert H, Henning H, et al, Right ventricular ejection fraction in patients with acute anterior and inferior myocardial infarction assessed by radionuclide angiocardiography. Circulation 57: 1078, 1978.

    Google Scholar 

  132. Hecht HS, Mirell SG, Rolett EL, et al, Left ventricular ejection fraction and segmental wall motion by peripheral first-pass radionuclide angiography. J. nucl. Med. 19: 17, 1978.

    PubMed  CAS  Google Scholar 

  133. Jengo JA, Oren V, Conant R, et al, Effects of maximal exercise stress on left ventricular function in patients with coronary artery disease using first pass radionuclide angiocardiography: A rapid, non-invasive technique for determining ejection fraction and segmental wall motion. Circulation 59: 60, 1979.

    PubMed  CAS  Google Scholar 

  134. Slutsky R, Karliner J, Ricci D, et al, Response of left ventricular volume to exercise in man assessed by radionuclide equilibrium angiography. Circulation 60: 565, 1979.

    PubMed  CAS  Google Scholar 

  135. Pantaleo N, Freeman M, Van Train K, et al, A simple, objective method for measurement of absolute left ventricular end-diastolic volume with multiple gated equilibrium scintigraphy. Clin. Nucl. Med. 5: 329, 1980.

    Google Scholar 

  136. Folland ED, Hamilton GW, Larson SM, et al, The radionuclide ejection fraction: A comparison of three radionuclide techniques with contrast angiography. J. nucl. Med. 18: 1159, 1977.

    PubMed  CAS  Google Scholar 

  137. Maddahi J, Berman DS, Silverberg R, et al, Validation of a two minute technique for multiple gated scintigraphic assessment of left ventricular ejection fraction and regional wall motion. J. nucl. Med. 19: 669, 1978.

    Google Scholar 

  138. Gordon GD, Ashburn WL, Slutsky AR, Assessment of ventricular function by first-pass radionuclide angiography. In: Clinical nuclear cardiology. Berman DS, Mason DT, (eds), Grune and Stratton, New York, p 204, 1981.

    Google Scholar 

  139. Wackers FJ, Giles RW, Hoffer PB, et al, Gold-19501, a new generator-produced short-lived radionuclide for sequential assessment of ventricular reformance by first pass radionuclide angiocardiography. Amer. J. Cardiol. 50: 89, 1982.

    Article  PubMed  CAS  Google Scholar 

  140. Wackers FJT, Berger HJ, Hoffer PB, Lange RC, Zaret BL, 195mGold for assessment of cardiac function (this volume).

    Google Scholar 

  141. Dymond C, Caplin J, Flatman W, et al, The cold pressor test: Serial evolutionary changes in left ventricular function assessed with Gold-195m (T ½ 30.5 sec). Eur. Heart J. 4: 65 (suppl E), 1983.

    Google Scholar 

  142. Shapiro B, Pillay M, Cox PH, et al, “First-pass left ventricular ejection fraction with Au-198m on a 1/4” crystal gamma camera. Eur. J. Nucl. Med. (to be published) 1984.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Remme, W.J. (1985). Myocardial Ischemia: A Profile of its Pathophysiological Basis and its Detection by Nuclear Cardiology. In: Biersack, H.J., Cox, P.H. (eds) Radioisotope studies in cardiology. Developments in Nuclear Medicine, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5022-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5022-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8724-7

  • Online ISBN: 978-94-009-5022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics