Skip to main content

Membrane hyperpolarizations and ionic channels in cultured human monocytes

  • Chapter
Mononuclear Phagocytes

Abstract

Until recently, studies on the resting electrophysiological properties of mononuclear phagocytes were done with intracellular microelectrodes. These cells were found to have generally low resting membrane potentials (range −10 to −30 mV) and to show single and oscillatory hyperpolarizations (1–4). Measurements in cells with high resting membrane potentials have shown, however, that some mononuclear phagocytes can have electrically excitable membranes (5, 6). Whether these measurements are characteristic of a subpopulation of mononuclear phagocytes or reflect the limitations of the techniques used for measurements remains uncertain (7). Hyperpolarizing responses in mononuclear phagocytes are known to be due to an increase in the conductance of the membrane for K+ evoked by an increase in intracellular Ca2+ (4, 8, 9). This K+(Ca2+) conductance is also present in L cells (10–13). The hyperpolarizing response (HR) has been extensively investigated in L cells and has been implicated with such cellular functions as phagocytosis (14), pinocytosis (15) and cell motility (16). In macrophages the HR has been found to be involved in chemotaxis (17) and possibly also phagocytosis (18).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallin EK, Wiederhold ML, Lipsky PE, Rosenthal AS: Spontaneous and induced membrane potential hyperpolarizations in macrophages. J Cell Physiol 1975, 86:653–661.

    Article  PubMed  Google Scholar 

  2. Dos Reis GA, Oliveira-Castro GM: Electrophysiology of phagocytic membranes. I. Potassium-dependent slow hyperpolarizations in mice macrophages. Biochim Biophys Acta 1977, 469:257–263.

    Article  PubMed  Google Scholar 

  3. Gormley IP, Wright MO, Ottery J: The effect of toxic particles on the electrophysiology of macrophage membranes. Ann Occup Hyg 1978, 21:141–149.

    Article  PubMed  CAS  Google Scholar 

  4. Ince C, Leijh PCJ, Meijer J, Van Bavel E, Ypey DL: Oscillatory hyperpolarizations and resting membrane potentials of mouse fibroblast and macrophage cell lines. J Physiol (London) 1984, 352:625–635.

    CAS  Google Scholar 

  5. Gallin EK: Voltage clamp studies in macrophages from mouse spleen cultures. Science (Wash. D.C.) 1981, 214:458–460.

    Article  CAS  Google Scholar 

  6. MacCann FV, Cole JJ, Guyre PM, Russel JAG: Action potentials in macrophages derived from human monocytes. Science 1983, 299:991–993.

    Article  Google Scholar 

  7. Gallin EK: Electrophysiological properties of macrophages and macrophage-like cells. In: Phagocytosis Past and Future, Karnovsky M, Bolis M. Academic Press, New York 1982, pp 29–46.

    Google Scholar 

  8. Oliveira-Castro GM, Dos Reis GA: Electrophysiology of phagocytic membranes: III. Evidence for a calcium-dependent potassium permeability change during slow hyper-polarizations of activated macrophages. Biochim Biophys Acta 1981, 640:500–511.

    Article  PubMed  CAS  Google Scholar 

  9. Persechini PM, Araujo EG, Oliveira-Castro GM: Electrophysiology of phagocytic membranes: induction of slow hyperpolarizations in macrophages and macrophage polykaryons by intracellular calcium injection. J Membr Biol 1981, 61:81–90.

    Article  PubMed  CAS  Google Scholar 

  10. Nelson PG, Peacock J, Minna J: An electrical response in fibroblasts. J Gen Physiol 1972, 60:58–71.

    Article  PubMed  CAS  Google Scholar 

  11. Okada Y, Doida Y, Roy G, Tsuchiya W, Inouye K, Inouye A: Oscillations of membrane potential in L cells: I. Basic characteristics. J Membr Biol 1977, 35:319–335.

    Article  PubMed  CAS  Google Scholar 

  12. Nelson PG, Henkart MP: Oscillatory membrane potential changes in cells of mesenchymal origin: the role of an intracellular regulating system. J Exp Biol 1979, 81:49–61.

    PubMed  CAS  Google Scholar 

  13. Oliveira-Castro GM: Ca2+-sensative K+ channels in phagocytic cell membranes. Cell Calcium 1983, 4:475–492.

    Article  PubMed  CAS  Google Scholar 

  14. Okada Y, Tsuchiya W, Yada T, Yano J, Yawo H: Phagocytic activity and hyperpolarizing responses in L-strain mouse fibroblasts. J Physiol (London) 1981, 313:101–119.

    CAS  Google Scholar 

  15. Tsuchiya W, Okada Y, Yano J, Murai A, Miyahara T, Tanaka T: Membrane potential changes associated with pinocytosis of serum lipoproteins in L cells. Expl Cell Res 1981, 136:271–278.

    Article  CAS  Google Scholar 

  16. Tsuchiya W, Okada Y, Yano J, Inouye A, Saski S, Doida Y: Effects of cytochalasin B and local anesthetics on electrical and morphological characteristics of L cells. Expl Cell Res 1981, 113:83–92.

    Article  Google Scholar 

  17. Gallin EK, Gallin JI: Interaction of chemotactic factors with human macrophages: Induction of transmembrane potentials. J Cell Biol 1977, 75:277–289.

    Article  PubMed  CAS  Google Scholar 

  18. Kouri J, Noa M, Diaz B, Niubo E: Hyperpolarisation of rat peritoneal macrophages phagocytosing latex particles. Nature 1980, 283:868–869.

    Article  PubMed  CAS  Google Scholar 

  19. Ince C, Ypey DL, Van Furth R, Verveen AA: Estimation of the membrane potential of cultured macrophages from the fast potential transient upon microelectrode entry. J Cell Biol 1983, 96:796–801.

    Article  PubMed  CAS  Google Scholar 

  20. Lassen UV, Nielson AMT, Pape L, Simonsen LO: The membrane potential of Ehrlich ascites tumor cells: micro-electrode measurements and their critical evaluation. J Membr Biol 1979, 61:81–90.

    Google Scholar 

  21. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ: Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981, 391:85–100.

    Article  PubMed  CAS  Google Scholar 

  22. Ypey DL, Clapham DE: Development of a delayed outward-rectifying K+ conductance in cultured mouse peritoneal macrophages. Proc Nat Acad Sci 1984, 81:3083–3088.

    Article  PubMed  CAS  Google Scholar 

  23. Ince C, Ypey DL, Diesselhoff-Den Dulk MMC, Visser JAM, De Vos A, Van Furth R: Micro-CO2-incubator for use on a microscope. J Immunol Meth 1983, 60:269–275.

    Article  CAS  Google Scholar 

  24. Ince C, Van Dissel JT, Diesselhoff MMC: A teflon culture dish for high-magnification microscopy and measurements in single cells. Pflügers Arch 1985, 403:240–244.

    Article  PubMed  CAS  Google Scholar 

  25. Ince C: Introduction to the membrane electrophysiology of mononuclear phagocytes. This volume.

    Google Scholar 

  26. Castranova V, Bowman I, Miles PR: Transmembrane potential and ionic content of rat alveolar macrophages. J Cell Physiol 1979, 101:471–480.

    Article  PubMed  CAS  Google Scholar 

  27. Young JD, Unkeless JC, Kaback HR, Cohn ZA: Macrophage membrane potential changes associated with IgG2B/ IgG1Fc receptor-ligand binding. Proc Nat Acad Sci 1983, 80:1357–1361.

    Article  PubMed  CAS  Google Scholar 

  28. Pallotta BS, Magelby KL, Barrett JN: Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 1981, 293:471–474.

    Article  PubMed  CAS  Google Scholar 

  29. Maruyama Y, Peterson OH, Flanagan P, Pearson GT: Quantification of Ca2+-activated K+, channels under hormonal control in pancreas acinar cells. Nature 1983, 305:228–232.

    Article  PubMed  CAS  Google Scholar 

  30. Roy G, Okada Y: Oscillation of membrane potential in L cells: III. K+ current-voltage curves. J Membr Biol 1978, 38:347–357.

    Article  PubMed  CAS  Google Scholar 

  31. Matteson DR, Deutsch C: K+ channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 1984, 307:468–471.

    Article  PubMed  CAS  Google Scholar 

  32. Decoursey TE, Chandy KG, Gupta S, Cahalan MD: Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis. Nature 1984, 307:465–468.

    Article  PubMed  CAS  Google Scholar 

  33. Okada Y, Tsuchiya W, Inouye A: Calcium channel and calcium pump involved in oscillatory hyperpolarizing responses of L-strain mouse fibroblasts. J Physiol 1979, 327:449–461.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Ince, C., Ypey, D.L. (1985). Membrane hyperpolarizations and ionic channels in cultured human monocytes. In: van Furth, R. (eds) Mononuclear Phagocytes. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5020-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5020-7_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8723-0

  • Online ISBN: 978-94-009-5020-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics