Skip to main content

Effects of Chemical Restraint and Anesthesia on Blood Glucose Levels

  • Chapter
Animal Models in Cardiovascular Research

Abstract

Although it is not a direct cardiovascular effect, almost every pharmacological agent used for restraint and/or anesthesia has been shown to be associated with changes in blood glucose levels. These changes are frequently linked to responses mediated by pancreatic or other insulin mechanisms, autonomic nervous system responses and/or adrenal gland responses. It is well accepted that there is a great deal of dependency and interaction among these various physiological control systems. There is also little question that these responses play a role in cardiovascular function. This role has not been completely quantitated nor even described qualitatively in detail. The purpose of this chapter is only to emphasize that the agents discussed can cause physiological adjustments that could interfere with the basic mechanism under study. This could result in erroneous conclusions by the investigator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feldberg, W., Shaligram, S.V., The hyperglycemic effect of morphine. Br. J. Pharm. 46: 602–618, 1972.

    CAS  Google Scholar 

  2. Vassalle, M., Role of catecholamine release in morphine hyperglycemia. Am. J. of Physiol. 200: 530–534, 1961.

    CAS  Google Scholar 

  3. Hsu, W.H., Hembrough, F.B., Intravenous glucose tolerance test in cats: influenced by acetylpromazine, ketamine, morphine, thiopental and xylazine. Am. J. Vet. Res. 43 (11): 2060–2061, 1982.

    PubMed  CAS  Google Scholar 

  4. Nalsadate, T. et al, Effect of chloropromazine on insulin release in mice: comparison between in vivo and in vitro. Japan. J. Pharmacol. 32: 950–953, 1982.

    Article  Google Scholar 

  5. Ammon, H.P.T., Orci, H., Steinke, J., Effect of Chloropromazine (CPZ) on insulin release in vivo and in vitro in the rat. J. Pharmacol Exp. Ther. 187: 423–429, 1975.

    Google Scholar 

  6. Proakis, A.G., Borowitz, J.L., Blockade of insulin release by certain phenothiazines. Biochem. Pharmacol. 23: 1693–1700, 1974.

    Article  PubMed  CAS  Google Scholar 

  7. Proakis, A.G., Mennear, J.H., Mirja, T.S., Borowitz, J.L., Phenothiazine-induced Hyperglycemia: Relation to CNS and adrenal effects. Proc. Soc. Exp. Biol. Med. 137:1385– 1388, 1971.

    Google Scholar 

  8. Feldberg, W., Symonds, H.W., The hyperglycemic effect of xylazine. J. Vet. Pharm. Ther. 3, 197–202, 1980.

    Article  CAS  Google Scholar 

  9. Goldfine, I.F., Arieff, A.I., Rapid inhibition of basal and glucose stimulated insulin release by xylazine. Endocrinology. 105: 920–922, 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Hsu, W.H., Hummel, S.K., Xylazine induced hyperglycemia in cattle: a possible involvement of the alpha-2 adrenergic receptors regulating insulin release. Endocrinology. 109 (3): 825–829, 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Fuanes, R.L., Nelville, E.D., Talarico, K.A. et al, Effect of pentobarbitol on plasma glucose and free fatty acids in the rat. Proc. Soc. Exp. Biol. Med. 139: 277–286, 1969.

    Google Scholar 

  12. Davidson, M.B., Studies on the mechanism of pentobarbital, glucose tolerance. Horm. Metab. Res. 3: 243–247, 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Brunner, E.A., Hangaard, N., The effect of thiopental on hepatic glycogen phosphorylase. J. Pharma. Exp. Ther. 150: 99–104, 1965.

    CAS  Google Scholar 

  14. Stevens, C.A., Herzog, W., Turner, M.E., Production of temporary prolonged hyperglycemia by the administration of glucose with barbiturates and sulfapyrazine. J. Pharmacol. Exp. Ther. 141: 267–273, 1963.

    PubMed  CAS  Google Scholar 

  15. Bite, L.Z., Eakins, K.E., The effects of general anesthesia on the chemical composition of blood plasma of normal rabbits. J. Pharmacol. Exp. Ther. 169: 277–286, 1969.

    Google Scholar 

  16. Hinton, B.T., Hyperglycemia in urethane anesthetized rats: involvement of the adrenal gland. Lab. Anim. Sci. 32: 251–252, 1982.

    PubMed  CAS  Google Scholar 

  17. Oyama, T., Takazawa, T., Effects of diethyl ether anesthesia and surgery on carbohydrate and fat metabolism. Can. Anaesth. Soc. J. 18 (l): 51–59, 1971.

    Article  PubMed  CAS  Google Scholar 

  18. Merin, R.G., Samuelson, P.N., Schalch, D.S., Major inhalation anesthetics and carbohydrate metabolism. Anesth. & Analg. Curr. Res. 50: 625–632, 1971.

    CAS  Google Scholar 

  19. Tyama, T., Takazawa, T., Effect of methoxyflurane anesthesia and surgery on human growth hormone and insulin levels in plasma. Can. Anaesth. Soc. J. 17: 347–358, 1970.

    Article  Google Scholar 

  20. Gottlieb, J.D., Swelt, R.B., Blood glucose levels during methoxyflurane anesthesia. Can. Anaesth. Soc. J. 11: 7–14, 1968.

    Article  Google Scholar 

  21. Streett, J.W., Jonas, A.M., Differential effects of chemical and physical restraint on carbohydrate tolerance testing in nonhuman primates. Lab. Anim. Sci. 32(3):263– 266, 1982.

    PubMed  CAS  Google Scholar 

  22. Oyama, T., Takiguchi, M., Effects of Neurolept analgesia on plasma levels of growth hormone and insulin. Brit. J. Anaesth. 42: 1105–1111, 1970.

    Article  PubMed  CAS  Google Scholar 

  23. Dobkin, A.B., Byles, P.H., Cho, M.H., Neurolept analgesia: Effect of Innovar-NO2 anesthesia on blood levels of histamine, serotonin, epinephrine and norepinephrine, and on urine excretion. Can. Anaesth. Soc. J. 12: 349–353, 1965.

    Article  PubMed  CAS  Google Scholar 

  24. Clarke, R.S.J., The hyperglycemic response to different types of surgery and anesthesia. Brit. J. Anaesth. 42:45– 52, 1970.

    Article  PubMed  CAS  Google Scholar 

  25. Clarke, R.S.J., Johnson, H., Sheridan, B., The influence of anesthesia and surgery on plasma Cortisol, insulin and free fatty acids. Brit. J. Anaesth. 42: 295–299, 1970.

    Article  CAS  Google Scholar 

  26. Ishihara, H., Kallus, F.F., Giesecke, A.H. Jr., Intravenous glucose tolerance test during anesthesia in dogs: insulin response and glucose clearance. Can. Anaesth. Soc. J. 28 (4): 381–385, 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Gross, D.R. (1985). Effects of Chemical Restraint and Anesthesia on Blood Glucose Levels. In: Animal Models in Cardiovascular Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5006-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5006-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8717-9

  • Online ISBN: 978-94-009-5006-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics