Skip to main content

Acid-base management during hypothermic circulatory arrest for cardiac surgery

  • Chapter
Acid-Base Regulation and Body Temperature

Part of the book series: Developments in Critical Care Medicine and Anesthesiology ((DCCA,volume 10))

Abstract

Four fundamental strategies for acid-base management during hypothermic cardio-pulmonary by-pass (H-CPBP) are pH-stat, \({P_{c{o_2}}}\) -stat, alpha-stat, and respiratory alkalosis. For H-CPBP in man, the blood is diluted with saline solution to HCT 20%(ß is about 20 slykes). On the logC-T graph pH and \({P_{c{o_2}}}\) lines are both horizontal. This graph closely approximates the human situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kindig ML, Filley GF, Swan H: Acid-base balance in clinical profound hypothermia with circulatory arrest: a graphic analysis. Poster presentation, FASEB, 1983.

    Google Scholar 

  2. Rahn H, Reeves RB: Patterns in vertebrate acid-base regulation. In: Evolution of Respiratory Processes. A Comparative Approach, Wood SC, Lenfant C (eds). Marcel Dekker Publishers, New York, 1979: 233–235.

    Google Scholar 

  3. Reeves RB: An imidazole alphastat hypothesis for vertebrate acid-base regulation; tissue carbon dioxide content and body temperature in bull frogs. Resp Physiol 14: 219–236, 1972.

    Article  CAS  Google Scholar 

  4. Reeves RB: Temperature-induced changes in blood acid-base status: pH and PC02 in a binary buffer. J Appl Physiol 40: 752–761, 1976.

    PubMed  CAS  Google Scholar 

  5. Kinding NB: Acid-base status hemoglobin blood buffer during cardiopulmonary bypass Presented at Confrence on physiology and biochemistry of blood gas transport, Canberra, ACT, Australia, September 5, 1983

    Google Scholar 

  6. Michenfelder JD, Terry HR Jr, Daw EG et al.: Induced hypothermia: physiologic effects, indications, and techniques. Surg Clin N Am 45: 889–898, 1965.

    PubMed  CAS  Google Scholar 

  7. Swan H, Zeavin I, Holmes JH, Montgomery V: Cessation of circulation in general hypothermia. 1. Physiologic changes and their control. Ann Surg 138: 360–376, 1954.

    Google Scholar 

  8. Swan H: Advances in Cardiopulmonary Diseases, Banyai AL, Gordon BL (eds). Year Book Medical Publishers, Chicago, 1962, Vol I: 662 - 694.

    Google Scholar 

  9. Hikasa U, Shirontani H, Satomura K, et al.: Open-heart surgery in infants. Arch Jap Chir 36: 495–504, 1967.

    CAS  Google Scholar 

  10. Horiuchi T, Koyamado K, Matano I, et al.: Radical operation for ventricular septal defect in infancy. J Thorac Cardiovasc Surg 46: 180–190, 1963.

    PubMed  CAS  Google Scholar 

  11. Mohri H, Hessel EA, Nelson RJ, et al.: Use of rheomacrodex and hyperventilation in prolonged circulatory arrest under deep hypothermia induced by surface cooling: method for open heart surgery in infants. Am J Surg 112: 241–250, 1966.

    Article  PubMed  CAS  Google Scholar 

  12. Mohri H, Dillard DH, Crawford EW, et al.: Method of surface-induced deep hypothermia for open-heart surgery in infants. J Thorac Cardiovasc Surg 58: 562–570, 1969.

    Google Scholar 

  13. Okamoto Y: Clinical studies for open-heart surgery in infants with profound hypothermia. Arch Jap Chir 38: 188–196, 1969.

    CAS  Google Scholar 

  14. Blair, E: Clinical Hypothermia. McGraw-Hill, New York, 1964: 50 - 56.

    Google Scholar 

  15. Otis AB, Jude J: Effect of body temperature on pulmonary gas exchange. Am J Physiol 188: 355–359, 1957.

    PubMed  CAS  Google Scholar 

  16. Seeringhaus JW, Stupfel M, Bradley AF: Alveolar dead space and arterial to end tidal carbon dioxide differences during hypothermia in dog and man. J Appl Physiol 10: 349–355, 1959.

    Google Scholar 

  17. Severinghaus JW, Larson CP Jr: Respiration in anesthesia. In: Handbook of Physiology, Section 3, Respiration, Volume II, Fenn WO, Rahn H (eds). The American Physiological Society, Washington, D.C., 1965: 1219–1259.

    Google Scholar 

  18. Schezer PH: Effect of hypothermia on compliance and resistance of the lung-thorax system of anesthetized man. J Appl Physiol 13: 53–56, 1958.

    Google Scholar 

  19. Van’t Hoff, JH: Etudes sur la dynamique chimique. Muller, Amsterdam, 1884.

    Google Scholar 

  20. Prakash O, Jonson B, Bos E, et al.: Cardiorespiratory and metabolic effect of profound hypothermia. Crit Care Med 6: 165–171, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Nealon TF Jr, Gosin S: Hypothermia: Physiologic affects and clinical application. Med Clin N Am 49: 1181–1188, 1965.

    PubMed  Google Scholar 

  22. Reitz BR, Ream AK: Uses of hyothermia in cardiovascular surgey. In: Acute Cardiovascular Management, Anaesthesia and Intensive Care, Ream AK, Fogdall RP (eds). J.B. Lippincott, Philadelphia, 1982: 830–851.

    Google Scholar 

  23. Fox LS, Blackstone EH, Kirklin JW, et al.: Relationship of whole body oxygen consumption to perfusion flow rate during hypothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg 83: 239–258, 1982.

    PubMed  CAS  Google Scholar 

  24. Swan H: Thermoregulation and Bioenergetics. American Elsevier, New York, 1974: 33–45.

    Google Scholar 

  25. Rahn H, Reeves RB: Hydrogen ion regulation during hypothermia; from the Amazon to the operating room. In: Applied Physiology in Clinical Respiratory Care, Prakash O (ed). Martinus Nijhoff Publishers, The Hague, 1982: 1–15.

    Google Scholar 

  26. Rahn H, Reeves RB, Howell BJ: Hydrogen ion regulation, temperature and evolution (The Amberson Lecture). Am Rev Respir Dis 112: 165–172, 1975.

    PubMed  CAS  Google Scholar 

  27. White FN: A comparative physiological approach to hypothermia. Editorial. J Thorac Cardiovasc Surg 82: 821–831, 1981.

    CAS  Google Scholar 

  28. Rahn H, Sadoul P, Farhi LE, Shapiro J: Distribution of ventilation and perfusion to lobes of the dog’s lung. Fed Proc 14: 117, 1955.

    Google Scholar 

  29. Blayo MC, Lecompte V, Pocidalo JJ: Control of acid-base status during hypothermia in man. Respir Physiol 42: 287–298, 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Rittenhouse E A, Ho CS, Mohri H, et al.: Circulatory dynamics during surface-induced hypothermia and after cardiac arrest for one hour. J Thorac Cardiovasc Surg 50: 359–369, 1971.

    Google Scholar 

  31. Wong KC, Mohri H, Dillard DH, et al.: Deep hypothermia and di-ethyl ether anesthesia for open-heart surgery in infants. A clinical report of 8 years’ experience. Anesth Anal 53: 765–771, 1974.

    CAS  Google Scholar 

  32. Wang H, Katz RL: Effects of changes in coronary blood pH on the heart. Circulation Res 17: 114–122, 1965.

    PubMed  CAS  Google Scholar 

  33. Ebert PA, Greenfield LJ, Austen WG, et al.: The relationship of blood pH during profound hypothermia on subsequent myocardial function. Surg Gynecol Obstet 114: 357–362, 1962.

    PubMed  CAS  Google Scholar 

  34. Follette DM, Fey K, Livesay J, et al.: Studies on myocardial reperfusion injury. I. Favorable modification by adjusting reperfusate pH. Surgery 82: 149–155, 1977.

    PubMed  CAS  Google Scholar 

  35. McConnell DH, White FN, Nelson RL, et al.: Importance of alkalosis in maintenance of ’ideal’ blood pH during hypothermia. Surg Forum 26: 263–265, 1975.

    PubMed  CAS  Google Scholar 

  36. Becker H, Vinton-Johansen J, Buckberg GD, et al.: Myocardial damage caused by keeping pH 7.4 during systemic hypothermia. J Thorac Cardiovasc Surg 82: 810 - 820, 1981.

    PubMed  CAS  Google Scholar 

  37. GollanF, Hoffman JE, Jones RM: Maintenance of life of dogs below 10° without hemoglobin. Am J Physiol 179: 640–647, 1954.

    Google Scholar 

  38. GollanF, Hoffman JE, Jones RM: Maintenance of life of dogs below 10° without hemoglobin. Am J Physiol 179: 640–647, 1954.

    Google Scholar 

  39. Boerema I, Wildschut A, Schmidt WJH: Experimental researches into hypothermia as an aid in surgery of the heart. Arch Chir Need 3: 25–37, 1951.

    CAS  Google Scholar 

  40. Ruud JT: The ice fish. Sci Am 213: 108–114, 1965.

    CAS  Google Scholar 

  41. Buckberg GD, Dyson CW, Emerson RC: Techniques for administering clinical cardioplegia - blood cardioplegia. In: A Textbook of Clinical Cardioplegia, Engelman RM, Levitsky S (ed). Futura Publishing, Mt. Kisco, New York, 1982: 305–316.

    Google Scholar 

  42. Austen WG: Experimental studies on the effects of acidosis and alkalosis on myocardial function after aortic occlusion. J Surg Res 5: 191–194, 1965.

    Article  PubMed  CAS  Google Scholar 

  43. Caress DL, Kissack AS, Slovin AJ, et al.: The effect of respiratory and metabolic acidosis on myocardial contractility. J Thorac Cardiovasc Surg 56: 571–577, 1968.

    PubMed  CAS  Google Scholar 

  44. Chesnais JM, Coraboeuf E, Sauvant MP, et al.: Sensitivity to H+, Li+, and Mg+ ions of the slow inward sodium current in frog atrial fibres. J Mol Cell Cardiol 7: 627–642, 1975.

    Article  PubMed  CAS  Google Scholar 

  45. Clowes HA, Sanga GA, Konitoxis A, et al.: Affect of acidosis on cardiovascular function in surgical patients. Ann Surg 154: 524–533, 1961.

    Article  PubMed  CAS  Google Scholar 

  46. Cobbe SM, Poole-Wilson PA: The time of onset and severity of acidosis in myocardial ischemia. J Mo Cell Cardiol 12: 745–760, 1980.

    Article  CAS  Google Scholar 

  47. Fry Ch, Poole-Wilson PA: Effects of acid-base changes on excitation-contraction coupling in guinea pig and rabbit cardiac ventricular muscle. J Physiol (Lond) 313: 141–160, 1981.

    CAS  Google Scholar 

  48. Larkovic H: Influence of changes in pH on the mechanical activity of cardiac muscle. Circ Res 19: 711–717, 1966.

    Google Scholar 

  49. Nahas GG, Cavert HM: Cardiac depressant effect of C02 and its reversal. Am J Physiol 190: 483–491, 1957.

    PubMed  CAS  Google Scholar 

  50. Poole-Wilson PA, Langer GA: Effect of pH on ionic exchange and function in rat and rabbit myocardium. Am J Physiol 229: 570–581, 1975.

    PubMed  CAS  Google Scholar 

  51. Poole-Wilson PA: Acidosis and contractility of heart muscle. In: Metabolic Acidosis, Ciba Foundation Symposium 87; Pitman Books, London, 1982: 58–76.

    Chapter  Google Scholar 

  52. Subramanian S, Vlad P, Fischer L, et al.: Sequellae of profound hypothermia and circulatory arrest in the corrective treatment of congenital heart disease in infants and small children. In: The Child with Congenital Heart Disease after Surgery, Kidd BSL, Rowe RD (eds). Futura Publishing, Mt. Kisco, New York, 1976: 421.

    Google Scholar 

  53. Tyers FGO, Todd GJ, Niebauer IM, et al.: The mechanism of myocardial damage following potassium citrate (Melrose) cardioplegia. Surgery 78: 45–53, 1975.

    PubMed  CAS  Google Scholar 

  54. Whelan DA Jr, Hamilton DG, Ganote E, et al.: Effect of transient period of ischemia on myocardial cells. 1. Effects on cell volume regulation. Am J Path 74: 381–392, 1974.

    Google Scholar 

  55. Williamson JR, Schaffer SW, Ford C, et al.: Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circulation (Supplement I ) 53: 3–14, 1976.

    Google Scholar 

  56. Schmidt CF: The influence of cerebral blood-flow on respiration. 1. The respiratory responses to changes in cerebral blood-flow. Am J Physiol 84: 202–207, 1928.

    CAS  Google Scholar 

  57. Gibbs FA, Maxwell H, Gibbs EL: Volume flow of blood through human brain. AMA Arch Neuro Physchiat 57: 132–139, 1947.

    Google Scholar 

  58. Kety SS, Schmidt CF: The nitrous-oxide method for quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J Clin Invest 27: 475–485, 1948.

    Google Scholar 

  59. Parkins WM, Jensen JM, Vars HM: Brain cooling in the prevention of brain damage during periods of circulatory occlusion in dogs. Ann Surg 140: 248–255, 1954.

    Article  Google Scholar 

  60. Bjork VO, Hultquist G: Contraindication to profound hypothermia in open-heart surgery. J Thorac Cardiovasc Surg 44: 1–13, 1962.

    PubMed  CAS  Google Scholar 

  61. Brierly JB: Neuropathological findings in patients dying after heart surgery. Thorax 18: 291–299, 1963.

    Article  Google Scholar 

  62. Egerton N, Egerton WS, Kay JH: Neurologic changes following profound hypothermia. Ann Surg 157: 366–374, 1963.

    Article  PubMed  CAS  Google Scholar 

  63. Payne WS, Theye RA, Kirklin JW: Effect of carbon dioxide on rate of brain cooling during induction of hypothermia by direct blood cooling. J Surg Res 3: 54 - 61, 1963.

    Article  PubMed  CAS  Google Scholar 

  64. Belsey RH, Dowlatshaki K, Skinner DB: Profound hypothermia in cardiac surgery. J Thorac Cardiovasc Surg 56: 497–506, 1968.

    PubMed  CAS  Google Scholar 

  65. Swan H: Clinical hypothermia: A lady with a past and some promise for the future. Surgery 73: 736–758, 1973.

    PubMed  CAS  Google Scholar 

  66. Ream AK, Reitz BA, Silverberg G: Temperature correction of PC02 and pH in estimating acid- base status. Anesthesiology 56: 51–44, 1982.

    Article  Google Scholar 

  67. Perna AM, Gardner TJ, Tabaddor K, et al.: Cerebral metabolism and blood flow after circulatory arrest during deep hypothermia. Ann Surg 178: 95–100, 1973.

    Article  PubMed  CAS  Google Scholar 

  68. Hagerdal M, Harp J, Siesjo BK: Influence of changes in arterial PC02 on cerebral blood flow and cerebral energy state during hypothermia in the rat. Acta Anesth Scand Suppl 57: 25–31, 1975.

    Article  CAS  Google Scholar 

  69. Carlson C, Hagerdal M, Siesjo BK: The effect of hypothermia upon oxygen consumption and upon organic phosphates, glycolytic metabolites, citric acid cycle intermediates and associated amino acids in rat cerebral cortex. J Neurochem 26: 1001 - 1012, 1976.

    Article  Google Scholar 

  70. Barrett-Boyes BG: Discussion of Brunberg, Reilly and Doty. Circulation, Supplement II, 49 and 50: 67–68, 1974.

    Google Scholar 

  71. Brunberg J A, Reilly E, Doty DB: Central nervous system consequences in infants after cardiac surgery using deep hypothermia and circulatory arrest. Circulation, Supplement II, 49 and 50: 60–68, 1974.

    Google Scholar 

  72. Clarkson PM, MacArthur BA, Barrett-Boyes BG, et al.: Developmental progress after cardiac

    Google Scholar 

  73. Clarkson PM, MacArthur BA, Barrett-Boyes BG, et al.: Developmental progress after cardiac surgery in infancy using hypothermia and circulatory arrest. Circulation 62: 855–961, 1980.

    PubMed  CAS  Google Scholar 

  74. Lincoln C, Wells F, Coghill S, et al.: Intelligence quotient and development following use of profound hypothermia and circulatory arrest for the repair of congenital heart defect in infants and young children. J Thorac Cardiovasc Surg. In press.

    Google Scholar 

  75. Wolfson SK Jr, Valow EH, Eisenstat S: Temperature differentials and metabolism in profound hypothermia. JAMA 183: 674–679, 1963.

    PubMed  Google Scholar 

  76. Brettschneider H Jr, Hubner G, Knoll D: Myocardial resistance and tolerance to ischemia: Physiological and biochemical basis. J Cardiovasc Surg 16: 241–260, 1975.

    Google Scholar 

  77. Buckberg GD, Brazier JR, Nelson RL, et al.: Studies of the efects of hypothermia on regional blood flow and metabolism during cardiopulmonary bypass. J Thorac Cardiovasc Surg 73: 87–95,

    Google Scholar 

  78. Gay WA Jr, Ebert PA: Functional, metabolic and morphological effects of potassium-induced cardioplegia. Surgery 74: 284–290, 1973.

    PubMed  Google Scholar 

  79. Hearse DJ, Steward DA, Brainbridge MV: Myocardial protection during ischemic cardiac arrest. Importance of magnesium in cardoplegic infusates. J Thorac Cardiovasc Surg 75: 875–877, 1978.

    Google Scholar 

  80. Jynge P, Hearse DJ, Brainbridge MV, et al.: Myocardial protection during ischemic cardiac arrest. J Thorac Cardiovasc Surg 73: 848–855, 1977.

    PubMed  CAS  Google Scholar 

  81. Kirsch V, Rodewald G, Karlmar P: Induced ischemic arrest. J Thorac Cardiovasc Surg 63: 121–128, 1969.

    Google Scholar 

  82. Bhayana JN, Gage AA: Intraoperative myocardial protection by potassium arrest and local cardiac hypothermia. Cryobiology 16: 526–533, 1979.

    Article  PubMed  CAS  Google Scholar 

  83. Ellis R, Ebert PA: Advantage of hypothermia and potassium cardioplegia in left ventricular hypertrophy. Ann Thorac Surg 24: 299–306, 1977.

    Article  Google Scholar 

  84. Follette DM, Mulder DG, Maloney JV Jr, et al.: Advantages of blood cardioplegia over continuous coronary perfusion or intermittent ischemia. J Thorac Cardiovasc Surg 76: 604–619,

    Google Scholar 

  85. Roe BD, Hutchinson JC, Fishman NH, et al.: Myocardial protection with cold, ischemic potassium-induced cardioplegia. J Thorac Cardiovasc Surg 73: 366–376, 1977.

    PubMed  CAS  Google Scholar 

  86. Cox JL, Sabiston DC Jr: Electro-physiologic consequences of cardioplegic preservation, ischemia, and reperfusion. In: A Textbook of Clinical Cardioplegia, Engelman RM, Levitsky S (eds). Futura Publishing Co., Mt. Kisco, N.Y., 1982: 405–417.

    Google Scholar 

  87. Clark RE, Ferguson TB, West PN, et al.: Pharmacologic preservation of the ischemic heart. Ann Thorac Surg 24: 307–314, 1977.

    Article  PubMed  CAS  Google Scholar 

  88. Brettschneider H Jr: Cardioplegic Workshop, Litwak RS (ed). Mt. Sinai School of Medicine, New York, 1979.

    Google Scholar 

  89. Blesse N, Doring V, Kalmar P, et al.: Intraoperative myocardial protection by cardioplegia in hypothermia. J Thorac Cardiovasc Surg 75: 405–413, 1978.

    Google Scholar 

  90. Rahn H: Body temperature and acid-base regulation. Pneumonologie 151: 87–94, 1974.

    Article  PubMed  CAS  Google Scholar 

  91. Litwak RD (ed): Cardioplegic Workshop. Mt. Sinai School of Medicine, New York, 1979.

    Google Scholar 

  92. Cross FS, Jones RD, Berne RM: Localized cardiac hypothermia as an adjunct to elective cardiac arrest. Surg Forum 8: 355–359, 1975.

    Google Scholar 

  93. Cunningham JN, Cantinella FP, Spencer FC: Blood cardioplegia - experience with prolonged cross-clamping. In: A Textbook of Clinical Cardioplegia, Engelman RM, Levitsky S (eds). Futura Publishing Co., Mt. Kisco, N.Y., 1982: 241–264.

    Google Scholar 

  94. Buckberg GD: Reply to the editor. J Thorac Cardiovasc Surg 85: 148–149, 1983.

    Google Scholar 

  95. Swain JA: Letter to the editor. J Thorac Cardiovasc Surg 85: 147–148, 1983.

    PubMed  CAS  Google Scholar 

  96. Swan H: The hydroxyl - hydrogen ion concentration ratio during hypothermia. Surg Gynecol Obstet 155: 897–912, 1983.

    Google Scholar 

  97. Kindig NB, Filley GF: Graphic representation of C02 equilibria in biologic systems. Physiol Teacher 26: 304–309, 1983.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Swan, H. (1985). Acid-base management during hypothermic circulatory arrest for cardiac surgery. In: Rahn, H., Prakash, O. (eds) Acid-Base Regulation and Body Temperature. Developments in Critical Care Medicine and Anesthesiology, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5004-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5004-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8716-2

  • Online ISBN: 978-94-009-5004-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics