Skip to main content

Acid-base regulation during hibernation

  • Chapter
Acid-Base Regulation and Body Temperature

Part of the book series: Developments in Critical Care Medicine and Anesthesiology ((DCCA,volume 10))

Abstract

The ‘constant pH’ strategy of hibernators involves loading considerable amounts of CO2 during the entrance into hibernation, and hyperventilating to eliminate this CO2 during the arousal. Together with the decrease of blood alpha imidazole, this indicates that the blood pH and \({P_{c{o_2}}}\) observed in hibernation result from the combined effects of a respiratory acidosis and a change in temperature. The respiratory acidosis also affects most intracellular compartments of the body, except for the heart and liver, in which a metabolic compensation takes place, resulting in a nearly constant alpha imidazole. Respiratory acidosis exerts inhibitory influences on various nervous and metabolic processes, and probably contributes to the great amplitude of regulation of metabolic rate characteristic of hibernation. The inhibition would be at least partly removed early in the arousal by hyperventilation, while during deep hibernation heart and liver would be protected by the alphastat control of intracellular pH. Our ignorance of the mechanisms ensuring the selective inhibition or facilitation of pHi regulation according to tissues precludes the clinical application of the hibernation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lyman CP: Who is who among the hibernators. In: Hibernation and Torpor in Mammals and Birds, Lyman CP, Willis JS, Malan A, Wang, LCH. Academic Press, New York, 1982: 12–36.

    Google Scholar 

  2. Kayser C: La depense d’energie des mammiferes en hibernation. Arch Sci Physiol 18: 137–150, 1964.

    CAS  Google Scholar 

  3. Malan A: Enzyme regulation, metabolic rate and acid-base state in hibernation. In: Animals and Environmental Fitness, Gilles R (ed). Pergamon Press, Oxford, 1980: 487–501.

    Google Scholar 

  4. Kayser C: The Physiology of Natural Hibernation. Pergamon Press, Oxford, 1961.

    Google Scholar 

  5. Wang LCH: Energetic and field aspects of mammalian torpor: The Richardson’s ground squirrel. In: Strategies in Cold: Natural Torpidity and Thermogenesis, Wang LC, Hudson JW (eds). Academic Press, New York, 1978: 109–145.

    Google Scholar 

  6. Heler HC, Colliver GW: CNS regulation of body temperature during hibernation. Am J Physiol 227: 583–589, 1974.

    Google Scholar 

  7. Heller HC, Colliver GW,Anand P: CNS regulation of body temperature in euthermic hibernators. Am J Physiol 227: 576–582, 1974.

    PubMed  CAS  Google Scholar 

  8. Heller HC, Colliver GW, Beard J: Thermoregulation during entrance into hibernation. Pflugers Arch 369: 55–59, 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Heller HC, Walker GM, Florant GL, Glotzbach SF, Berger RJ: Sleep and hibernation: Electrophysiological and thermoregulatory homologies. In: Strategies in Cold: Natural Torpidity and Thermogenesis, Wang LC, Hudson JW (eds). Academic Press, New York, 1978: 225–265.

    Google Scholar 

  10. Chatfield PO, Lyman CP: Subcortical electrical activity in the golden hamster during arousal from hibernation. Electroencephalogr Clin Neurophysiol 6: 403–408, 1954.

    Article  PubMed  CAS  Google Scholar 

  11. Kayser C, Malan A: Central nervous system and hibernation. Experientia 19: 1–11, 1963.

    Article  Google Scholar 

  12. Kilduff TS, Sharp FR, Heller HC: [14C] 2-deoxyglucose uptake in ground squirrel brain during hibernation. J Neuroscience 2: 143–157, 1982.

    CAS  Google Scholar 

  13. Lyman CP: Sensitivity to arousal. In: Hibernation and Torpor in Mammals and Birds, Lyman CP, Willis JS, Malan A, Wang LCH. Academic Press, New York, 1982: 77–91.

    Google Scholar 

  14. Behrisch HW: Metabolic economy at the biochemical level: The hibernator. In: Strategies in Cold: Natural Torpidity and Thermogenesis, Wang LCH, Hudson JW (eds). Academic Press, New York, 1978: 461–497.

    Google Scholar 

  15. Behrisch HW, Smullin DH, Morse GA: Life at low and changing temperatures. In: Survival in the Cold. Musacchia XJ, Jansky L (eds). Elsevier-North Holland, New York, 1981: 191–212.

    Google Scholar 

  16. Borgmann AI, Moon TW: Enzymes of the normothermic and hibernating bat. Myotis lucifugus: temperature as a modulator of pyruvate kinase. J Comp Physiol 107B: 185–199, 1976.

    CAS  Google Scholar 

  17. Charnock JS: Membrane lipid phase-transitions: a possible biological response to hibernation? In: Strategies in Cold: Natural Torpidity and Thermogenesis, Wang LCH, Hudson JW (eds). Academic Press, New York, 1978: 417–460.

    Google Scholar 

  18. Malan A: Adaptation to poikilothermy in endotherms. J Therm Biol 8: 79–84, 1983.

    Article  CAS  Google Scholar 

  19. Moon TW, Borgmann AI: Enzymes of the normothermic and hibernating bat, Myotis lucifugus: metabolites as modulators of pyruvate kinase. J Comp Physiol 107B: 201–210, 1976.

    CAS  Google Scholar 

  20. Behrisch HW, Ortner I, Wieser W: Temperature and regulation of enzyme activity in heterother- mic tissues of an alpine mammal. Lactate dehydrogenase from skeletal muscle of the chamois. J Therm Biol 2: 185–189, 1977.

    Article  CAS  Google Scholar 

  21. Hand SC, Somero GN: Phosphofructokinase of the hibernator Citellus beecheyi: Temperature and pH regulation of activity via influences on the tetramer-dimer equilibrium. Physiol Zool 56: 380–388, 1983.

    CAS  Google Scholar 

  22. Templeton JR: Reptiles. In: Comparative Physiology of Thermoregulation, Vol. 1. Whittow GC (ed). Academic Press, New York, 1970: 167–221.

    Google Scholar 

  23. Malan A: Respiration and acid-base state in hibernation. In: Hibernation and Torpor in Mammals and Birds, Lyman CP, Willis JS, Malan A, Wang LCH. Academic Press, New York, 1982: 237–282.

    Google Scholar 

  24. Grande F: Man under caloric deficiency. IN: Handbook of Pgysiology. Sect. 4: Adaption the Environment, Dill DB (ed). Am Physiol SOc, Washington, DC.: 911–937

    Google Scholar 

  25. Le Maho Y: Metabolic adaptations to long-term fasting in antarctic penguins and domestic geese. J Therm Biol 8: 91–96, 1983.

    Article  Google Scholar 

  26. Lyman CP: Effect of increased C02 on respiration and heart rate of hibernating hamsters and ground squirrels. Am J Physiol 167: 638–643, 1951.

    PubMed  CAS  Google Scholar 

  27. Tahti H: Effects of changes in C02 and 02 concentrations in the inspired gas on respiration in the hibernating hedgehog (Erinaceus europaeus L.) Ann Zool Fenn 12: 183–187, 1975.

    Google Scholar 

  28. Malan A, Arens H, Waechter A: Pulmonary respiration and acid-base state in hibernating marmots and hamsters. Respir Physiol 17: 45–61, 1973.

    Article  PubMed  CAS  Google Scholar 

  29. Bickler PE: Blood acid-base status of an awake heterothermic,Spermophilus tereticaudus. Respir Physiol 57: 307–316

    Google Scholar 

  30. Rodeau JL: The effect of temperature on intracellular pH in crayfish neurones and muscle fibers. Am J Physiol 246: C45 - C49, 1984.

    PubMed  CAS  Google Scholar 

  31. Walsh PJ, Moon TW: Intracellular pH-temperature interactions of hepatocytes from American eels. Am J Physiol 245: R32 - R37, 1983.

    PubMed  CAS  Google Scholar 

  32. Hitzig BM: Temperature-induced changes in turtle CSF pH and central control of ventilation. Resp Physiol 49: 205–222, 1982.

    Article  CAS  Google Scholar 

  33. Reeves RB: Temperature induced changes in blood acid-base status: pH and PC02 in a binary buffer. J Appl Physiol 40: 752–761, 1976.

    PubMed  CAS  Google Scholar 

  34. Reeves RB: Temperature induced changes in blood acid-base status: Donnan rcl and red cell volume. J Appl Physiol 40: 762–767, 1976.

    PubMed  CAS  Google Scholar 

  35. Reeves RB: An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14: 219–236, 1972.

    Article  PubMed  CAS  Google Scholar 

  36. Malan A: Blood acid-base state at a variable temperature. A graphical representation. Respir Physiol 31: 259–275, 1977.

    Article  PubMed  CAS  Google Scholar 

  37. Rodeu JL. Mau A: A two compartment model of blood acid stae state at constant or variable temperature, respir Physiol 37: 5–30

    Google Scholar 

  38. Funder J, Wieth JO: Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol Scand 68: 234 - 245, 1966.

    Article  CAS  Google Scholar 

  39. Woodbury JW: Regulation of pH. In: Physiology and Biophysics, Ruch TC, Patton HD (eds). Saunders, Philadelphia, Pa., 1965: 899–938.

    Google Scholar 

  40. Snapp BD, Heller HC: Suppression of metabolism during hibernation in ground squirrels (Citellus lateralis). Physiol Zool 54: 297–307, 1981.

    Google Scholar 

  41. Dontcheff L, Kayser C: Explication de certains quotients respiratoires aberrants chez les hiber- nants. C.R. Soc. Biol. (Paris) 118: 81–83, 1934.

    Google Scholar 

  42. Kayser C, Rietsch ML, Lucot MA: Les echanges respiratoires et la frequence cardiaque des hibernants au cours du reveil de leur sommeil hivernal. Arch Sci Physiol 8: 15–194, 1954.

    Google Scholar 

  43. Cannon B, Nedergaard J, Sundin U: Thermogenesis, brown fat and thermogenin. In: Survival in the Cold, Musacchia XJ, Jansky L (eds). Elsevier-North Holland, New York, 1981: 99–120.

    Google Scholar 

  44. Lyman CP: Mechanisms of arousal. In: Hibernation and Torpor in Mammals and Birds, Lyman CP, Willis JS, Malan A, Wang LCH. Academic Press, New York 1982: 104–123.

    Google Scholar 

  45. Lyman CP: The oxygen consumption and temperature regulation of hibernating hamsters. J Exp Zool 109: 55–78, 1948.

    Article  PubMed  CAS  Google Scholar 

  46. Roos A, Boron WF: Intracellular pH. Physiol Rev 61: 296–434, 1981.

    PubMed  CAS  Google Scholar 

  47. Poole DT, Butler TC, Waddell WJ: Intracellular pH of the Ehrlich ascites tumor cell. J Natl Cancer Inst 32: 939–946, 1964.

    CAS  Google Scholar 

  48. Malan A, Rodeau JL, Daull R: Intracellular pH in hibernating hamsters. Cryobiology 18: 100–101, 1981.

    Article  Google Scholar 

  49. Fenton RA, Gonzalez NC, Clancy RL: The effect of dibutyryl cyclic AMP and glucagon on the myocardial cell pH. Respir Physiol 32: 213–223, 1978.

    Article  PubMed  CAS  Google Scholar 

  50. Messeter K, Siesjo BK: The intracellular pH’ in the brain in acute and sustained hypercapnia. Acta Physiol Scand 83: 210–219, 1971.

    Article  PubMed  CAS  Google Scholar 

  51. Stewart PA: Independent and dependent variables of acid-base control. Respir Physiol 33: 9–26, 1978.

    Article  PubMed  CAS  Google Scholar 

  52. Kayser C, Franck RM: Comportement des tissus calcifies du hamster d’Europe Cricetus cricetus au cours de l’hibernation. Arch Oral Biol 8: 703–718, 1963.

    Article  PubMed  CAS  Google Scholar 

  53. Haller AC, Zimny ML: Effects of hibernation on interradicular alveolar bone. J Dent Res 56: 1552–1557, 1977.

    Article  PubMed  CAS  Google Scholar 

  54. Zimny ML, Haller AC: Effects of hibernation on dental tissues: a SEM analytical study. Comp Biochem Physiol 60A, 257 - 262, 1978.

    Article  Google Scholar 

  55. Zimmerman GD, McKean TA, Hardt AB: Hibernation and disuse osteoporosis. Cryobiology 13: 84–94, 1976.

    Article  PubMed  CAS  Google Scholar 

  56. Tempel GE, Wolinsky I, Musacchia XJ: Bone and serum calcium in normothermic, cold- acclimated and hibernating hamsters. Comp Biochem Physiol 61A: 145–147, 1978.

    Article  Google Scholar 

  57. Temple GE, Wolinsky I, Musacchia XJ: Bone and serum calcium in normothothermic, Coldacclimated and hibernating hamster. Comp Biochem Physiol 61A:145–147, 1978.

    Google Scholar 

  58. Malan A: Hibernation as a model for studies on thermogenesis and its control. In: Effectors of Thermogenesis, Girardier L, Seydoux J (eds). Birkhauser, Basel, 1978: 303–314.

    Google Scholar 

  59. Cohen RD, Isles RA: Intracellular pH: measurement, control and metabolic interrelationships. CRC Crit Rev Clin Lab Sci 6: 101–143, 1975.

    Article  PubMed  CAS  Google Scholar 

  60. Nuccitelli R, Deamer DW: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. Alan R. Liss, New York, 1982.

    Google Scholar 

  61. Tomoda A, Tsuda-Hirota S, Minakami S: Glycolysis of red cells suspended in solutions of impermeable solutes. Intracellular pH and glycolysis. J Biochem (Tokyo) 81: 697–701, 1977.

    CAS  Google Scholar 

  62. Fidelman ML, Seeholzer KB, Walsh KB, Moore RD: Intracellular pH mediates action of insulin on glycolysis in frog skeletal muscle. Am J Physiol 242: C87–C93, 1982.

    PubMed  CAS  Google Scholar 

  63. Pepelko WE, Dixon GA: Elimination of cold-induced nonshivering thermogenesis by hypercapnia. Am J Physiol 227: 264–267, 1974.

    PubMed  CAS  Google Scholar 

  64. Nahas GC, Poyart C: Effect of arterial pH alterations on metabolic activity of norepinephrine. Am J Physiol 212: 765–772, 1967.

    PubMed  CAS  Google Scholar 

  65. Wiinnenberg W, Baltruschat D: Temperature regulation of golden hamsters during acute hypercapnia. J Therm Biol 7: 83–86, 1982.

    Article  Google Scholar 

  66. Schaefer KE, Wiinnenberg W: Threshold temperatures for shivering in acute and chronic hypercapnia. J Appl Physiol 41: 67–70, 1976.

    PubMed  CAS  Google Scholar 

  67. Grande F: Man under caloric deficiency. IN: Handbook of Pgysiology. Sect. 4: Adaption the Environment, Dill DB (ed). Am Physiol SOc, Washington, DC.: 911–937

    Google Scholar 

  68. Clausen G: Acid-base balance in the hedgehog Erinaceus europaeus (L.) during hibernation hypothermia, cooling and rewarming. Arbok Univ Bergen, Mat.-Naturvitensk Ser No. 6: 1–11, 1966.

    Google Scholar 

  69. Tahti H, Soivio A: Blood gas concentrations, acid-base balance and blood pressure in hedgehogs in the active state and in hibernation with periodic respiration. Ann Zool Fenn 12: 188–192, 1975.

    CAS  Google Scholar 

  70. Tahti H, Soivio A: Blood gas concentrations, acid-base balance and blood pressure in hedgehogs in the active state and in hibernation with periodic respiration. Ann Zool Fenn 12: 188–192, 1975.

    Google Scholar 

  71. Musacchia XJ, Volkert WA: Blood gases in hibernating and active ground squirrels: Hb02 affinity at 6 and 38° C. Am J Physiol 221: 128–130, 1971.

    PubMed  CAS  Google Scholar 

  72. Goodrich CA: Acid-base balance in euthermic and hibernating marmots. Am J Physiol 224: 1185–1189, 1973.

    PubMed  CAS  Google Scholar 

  73. KreienbĂ¼hl G, Strittmatter J, Ayim E: Blood gas analyses of hibernating hamsters and dormice Pfliigers Arch 336: 167 - 172, 1976.

    Google Scholar 

  74. Bickler PE: CO2 balance of a heterothermic rodent: comparison of sleep, torpor, and awake state. Am J Physiol 246: R49-R55.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Malan, A. (1985). Acid-base regulation during hibernation. In: Rahn, H., Prakash, O. (eds) Acid-Base Regulation and Body Temperature. Developments in Critical Care Medicine and Anesthesiology, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5004-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5004-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8716-2

  • Online ISBN: 978-94-009-5004-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics