Skip to main content

Basic physical principles of cardiac imaging systems

  • Chapter
Digital Cardiac Imaging
  • 65 Accesses

Abstract

The intent of this chapter is to provide an overview of the basic physics in cardiac imaging systems, excluding magnetic resonance imaging. A later chapter describes both the physics of magnetic resonance imaging as well as preliminary clinical results. Most current imaging systems can be classified into one of two categories, those generating images of projections and those generating tomograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett HH, Swindel W: Radiological imaging, Vol 2. Academic Press, New York, 1981, p 534.

    Google Scholar 

  2. ibid, Vol 1, pp 317-323.

    Google Scholar 

  3. Mistretta CA: X-ray image intensifiers. In: Haus A (ed.), The physics of medical imaging: recording system measurements and techniques. Am. Institute of Physics, New York, 1979, p 188.

    Google Scholar 

  4. Papoulis A: The fourier integral and its applications. McGraw-Hill, New York, 1962, pp 50–52.

    Google Scholar 

  5. Kruger RA, Mistretta CA, Crummy AB et al.: Digital k-edge subtraction radiography. Radiology 125: 243–245, 1977.

    PubMed  CAS  Google Scholar 

  6. Barrett HH, Swindel W: Radiological imaging, Vol 1. Academic Press, New York, 1981, pp 220–229.

    Google Scholar 

  7. Anger HO: Scintillation camera. Rev Sci Instrum 29: 27, 1958.

    Article  CAS  Google Scholar 

  8. Hounsfield GN: Computerized transverse axial scanning tomography. Part I, description of the system. Brit J Radiol 46: 1016–1022, 1973.

    Article  PubMed  CAS  Google Scholar 

  9. Bracewell RN: Strip integration in radio astronomy. Aust J Phys 9: 198 - 217, 1956.

    Article  Google Scholar 

  10. Mersereau RM, Oppenheim AV: Digital reconstruction of multi-dimensional signals from their projections. IEEE Proc 62: 1319–1338, 1974.

    Article  Google Scholar 

  11. Boyd DP: Theoretical possibilities for CT scanner development. Diagn Imaging, Dec 1982, pp 32–60.

    Google Scholar 

  12. Knoll GF: Single-photon emission computed tomography. IEEE Proc 71: 320–329, 1983.

    Article  Google Scholar 

  13. Ter Pogossian MM, Ficke DC, Yamamoto M, Hood JT Sr: Super PETT I: a positron emission tomograph utilizing photon time-of-flight information. IEEE Trans Med Imaging 1: 179–187, 1982.

    Article  Google Scholar 

  14. Gross SA, Johnston RL, Dunn F: Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust Soc Am 64 (2): 423–457, 1978.

    Article  Google Scholar 

  15. Wells PNT: Biomedical ultrasonics. Academic Press, New York, 1977, p 16.

    Google Scholar 

  16. Karrer HE, Dias JF, Larson JD, Pering RD, Maslak SH, Wilson DA: A phased array accoustic imaging system for medical use. In: Alais P (ed.), Acoustical imaging, Vol 10. Plenum Press, New York, 1982, pp 47–63.

    Google Scholar 

  17. Skorton DJ, Collins SM, Woskoff S, Melton HE Jr: Range- and azimuth-dependent variability of quantitative texture measures in two-dimensional echocardiographic images. Ultrasonic Imaging (abstr) 4 (2): 183, 1982.

    Google Scholar 

  18. Mimbs JW, Bouwens D, Cohen RD, O’Donnell M, Miller JG, Sobel BE: Effects of myocardial ischemia on quantitative ultrasonic backscatter and identification of responsible determinants. Circ Res 49: 89–96, 1981.

    PubMed  CAS  Google Scholar 

  19. Madaras EI, Barzilai B, Perez JE, Sobel BE, Miller JG: Systematic variations of myocardial backscatter during the cardiac cycle in dogs. Ultrasonic Imaging (abstr) 4 (2): 185, 1982.

    Google Scholar 

  20. O’Donnell M, Mimbs JW, Miller JG: The relationship between collagen and ultrasonic attenua¬tion in myocardial tissue. J Acoust Soc Am 64 (2): 512–517, 1979.

    Article  Google Scholar 

  21. Kuc R: Estimating acoustic attenuation from reflected ultrasound signals: comparison of spectral- shift and spectral-difference approaches. IEEE Trans Acoust, Speech and Signal Processing 32 (1): 1–6, 1984.

    Article  Google Scholar 

  22. Meyer CR: Preliminary results on a system for wideband reflection-mode ultrasonic attenuation imaging. IEEE Trans Sonics and Ultrasonics 29 (1): 16, 1982.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Meyer, C.R. (1985). Basic physical principles of cardiac imaging systems. In: Buda, A.J., Delp, E.J. (eds) Digital Cardiac Imaging. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4996-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4996-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8712-4

  • Online ISBN: 978-94-009-4996-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics