Skip to main content

Digital two-dimensional echocardiography

  • Chapter
Digital Cardiac Imaging

Abstract

Over the past two decades, echocardiography has emerged as an essential diagnostic tool in clinical cardiology. This is related to the fact that it is entirely noninvasive, can be readily performed at the bedside, and can provide accurate and reproducible information at no known risk to the patient. M-mode echocardiography was initially used to provide a unidimensional view of the heart, and although it contributed to our knowledge of many important physiologic and pathophysiologic relationships, it remains limited in capability because of the lack of spatial orientation. The development of two-dimensional echocardiography in the early 1970’s has allowed real-time, tomographic imaging of several planes through the heart. The speed of developments in the electronic industry has resulted in dramatic improvements in transducer design and instrumentation over the past decade which has contributed to major improvements in this cardiac imaging modality so that good spatial and temporal resolution are now possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feigenbaum H: Echocardiography. Third edition. Lea amp Febiger, Philadelphia, 1981.

    Google Scholar 

  2. Weyman AE: Cross-sectional echocardiography. Lea amp Febiger, Philadelphia, 1982.

    Google Scholar 

  3. Wells PNT: Biomedical ultrasonics. Academic Press, New York, 1977.

    Google Scholar 

  4. Sahn D J, Anderson F (eds): Two-dimensional anatomy of the heart: an atlas for echocardiogra- phers. John Wiley amp Sons, New York, 1982.

    Google Scholar 

  5. Hagan Ad, DiSeisa TG, Bloor CM, Calleja HB (eds): Two-dimensional echocardiography: clinical-pathological correlations in adult and congenital heart disease. Little, Brown amp Co, Boston, 1984.

    Google Scholar 

  6. Skorton DJ, McNary CA, Child JS, Shah PM: Computerized image processing in cross- sectional echocardiography. Am J Cardiol 45: 403–486, 1980.

    Article  Google Scholar 

  7. Matsumoto M, Matsuo H, Kitabalake A, Inoue M, Hamanka Y, Tamura A, Tanaka K, Hiroshi A: Three-dimensional echocardiograms and two-dimensional echocardiographic images at desired planes by a computerized system. Ultrasound Med Biol 3: 163–179, 1977.

    Article  PubMed  CAS  Google Scholar 

  8. Garrison JB, Weis JL, Manghan WL, Tuck ON, Guier WN, Fortuin NJ: Quantifying regional wall motion and thickening in two-dimensional echocardiography with a computer-aided con-touring system. IEEE Computers in Cardiol 25–35, 1977.

    Google Scholar 

  9. Skolnick ML: A new approach to ultrasound image recording using a video disk recorder. Radiology 133: 530, 1979.

    PubMed  CAS  Google Scholar 

  10. Garcia E, Gueret P, Bennett M, Corday E, Zwehl W, Meerbaum S, Corday S, Swan HJC, Berman D: Real-time computerization of two-dimensional echocardiography. Am Heart J101: 763–792, 1981.

    Article  Google Scholar 

  11. Jenkins JM, Qian G, Besozzi M, Delp EJ, Buda AJ: Computer processing of echocardiographic images for automated edge detection of left ventricular boundaries. IEEE Computers in Cardiol 391–394, 1981.

    Google Scholar 

  12. Wells PNT, Woodcock JP: Computers in ultrasonic diagnostics. Research Studies Press, Forest Grove, OR, 1977.

    Google Scholar 

  13. Robinson DE, Williams BG: Computer acquisition and processing of ultrasonic data. Ultra-sonics in Medicine. Excerpta Medica, Amsterdam, 96–102, 1975.

    Google Scholar 

  14. Buda AJ, Delp EJ, Meyer CR, Jenkins JM, Smith DN, Bookstein FL, Pitt B: Automatic computer processing of digital two-dimensional echocardiograms. Am J Cardiol 52: 384–389, 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Smith DN, Buda AJ, Delp EJ, Jenkins JM, Meyer CR, Splittgerber FH, Pitt B: Mitral valve tracking of directly digitized 2-D echocardiograms. IEEE Computers in Cardiol 329–332, 1982.

    Google Scholar 

  16. Delp EJ, Buda AJ, Swastek M, Smith DN, Jenkins JM, Meyer CR, Pitt B: The analysis of two- dimensional echocardiograms using a time-varying image approach. IEEE Computers in Cardiol 391–394, 1982.

    Google Scholar 

  17. Skorton DJ, McNary CA, Child JS, Newton FC, Shah PM: Digital image processing of two-dimensional echocardiograms: identification of the endocardium. Am J Cardiol 48: 479–486, 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Zwehl W, Levy R, Garcia E, Haendchen RV, Childs W, Corday SR, Meerbaum S, Corday E: Validation of a computerized edge detection algorithm for quantitative two-dimensional echo-cardiography. Circulation 68 (5): 1127–1135, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Martin WN, Agfarwal JK: Dynamic scene analysis. Computers, Graphics, and Image Processing 14: 12–18, 1981.

    Google Scholar 

  20. Wyatt HL, Haendchen RV, Meerbaum S, Corday E: Assessment of quantitative methods for 2-dimensional echocardiography. Am J Cardiol 52: 396–402, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Wyatt HL, Heng MK, Meerbaum S, Hestenes JD, Cobo JM, Davison RM, Corday E: Cross- sectional echocardiography. I. Analysis of mathematic models for quantifying mass of the left ventricle in dogs. Circulation 60: 1104–1113, 1979.

    PubMed  CAS  Google Scholar 

  22. Wyatt HL, Heng MK, Meerbaum S, Hestenes JD, Dula E, Corday E: Cross-sectional echocar-diography. II. Analysis of mathematical models for quantifying volume of the formalin-fixed left ventricle. Circulation 61: 119–1125, 1980.

    Google Scholar 

  23. Wyatt HL, Meerbaum S, Heng MK, Gueret P, Corday E: Cross-sectional echocardiography. III. Analysis of mathematical models for quantifying volume of symmetric and asymmetric left ventricle. Am Heart J 100: 821–828, 1980.

    Article  PubMed  CAS  Google Scholar 

  24. Eaton LW, Maughan WL, Shoukas AA, Weiss JL: Accurate volume determination in the isolated ejecting canine left ventricle by two-dimensional echocardiography. Circulation 60: 320–326, 1979.

    PubMed  CAS  Google Scholar 

  25. Schiller NB, Acquatella H, Ports TA, Drew D, Goerke J, Ringertz H, Silverman NH, Brundage B, Botvinick EH, Boswell R, Carlsson E, Parmley WW: Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation 60: 547–555, 1979.

    PubMed  CAS  Google Scholar 

  26. Folland ED, Parisi AF, Moynihan BS, Jones DR, Feldman CL, Tow DE: Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. Circulation 60: 760–766, 1979.

    PubMed  CAS  Google Scholar 

  27. Helak JW, Reichek N: Quantitation of human left ventricular mass and volume by two- dimensional echocardiography; in vitro anatomic validation. Circulation 63: 1398–1407, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Stamm RB, Carabello BA, Mayers DL, Martin RP: Two-dimensional echocardiographic measurement of left ventricular ejection fraction: prospective analysis of what constitutes an adequate determination. Am Heart J 102: 136–144, 1982.

    Article  Google Scholar 

  29. Schiller NB, Skiolderbrand CG, Schiller EJ, Mavroudis CC, Silverman NH, Rahimtoola SH, Lipton MJ: Canine left ventricular mass estimation by two-dimensional echocardiography. Circulation 68: 210–216, 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Weiss JL, Eaton LW, Kallman CH, Maughan WL: Accuracy of volume determination by two- dimensional echocardiography: defining requirements under controlled conditions in the eject-ing canine left ventricle. Circulation 67: 889–895, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Reichek N, Helak J, Plappert T, St John Sutton M, Weber KT: Anatomic validation of left ventricular mass estimates from clinical two-dimensional echocardiography: initial results. Circulation 67: 348–352, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Schnittger I, Fitzgerald PJ, Daughters GT, Ingels NB, Kantrowitz N, Schwartzkopf A, Meed CW, Popp RL: Limitations of comparing left ventricular volumes by two-dimensional echocardiography, myocardial markers and cineangiography. Am J Cardiol 50: 512–519, 1982.

    Article  PubMed  CAS  Google Scholar 

  33. Erbel R, Schweizer P, Lambertz H, Henh G, Meyer J, Krebs W, Effert S: Echoventriculogra-phy — a simultaneous analysis of two-dimensional echocardiography and cine ventriculography. Circulation 67: 205–215, 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Moynihan PF, Parisi AF, Feldman CL: Quantitative detection of regional left ventricular contraction abnormalities by two-dimensional echocardiography. I. Analysis of methods. Cir-culation 63: 752–760, 1981.

    CAS  Google Scholar 

  35. Parisi AF, Moynihan PF, Folland ED, Feldman CL: Quantitative detection of regional left ventricular contraction abnormalities by two-dimensional echocardiography. II. Accuracy in coronary artery disease. Circulation 63: 761–767, 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Sheehan FH, Mathey DG, Schofer J, Krebber H, Dodge HT: Effect of interventions in salvaging left ventricular function in acute myocardial infarction: a study of intracoronary streptokinase. Am J Cardiol 52: 431–443, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Le Winter MM, Kent RS, Kroener JM, Carew TE, Coveil JW: Regional differences in myocar¬dial performance in the left ventricle of the dog. Circ Res 37: 191–199, 1975.

    Google Scholar 

  38. Shapiro E, Marier DL, St John Sutton MG, Gibson DG: Regional non-uniformity of wall dynamics in normal left ventricle. Brit Heart J 45: 264–270, 1981.

    Article  PubMed  CAS  Google Scholar 

  39. Pandian NG, Skorton DJ, Collins SM, Falsetti HL, Burke ER, Kerber RE: Heterogeneity of left ventricular segmental wall thickening and excursion in 2-dimensional echocardiograms of normal human subjects. Am J Cardiol 51: 167–173, 1983.

    Article  Google Scholar 

  40. Haendchen RV, Wyatt HL, Maurer G, Zwehl W, Bear M, Meerbaum S, Corday E: Quantita¬tion of regional cardiac function by two-dimensional echocardiography. I. Patterns of con¬traction in the normal left ventricle. Circulation 67: 1234–1245, 1983.

    Article  PubMed  CAS  Google Scholar 

  41. Kerber RE, Marcus ML, Ehrhardt J, Wilson R, Abboud FM: Correlation between echocardiographically demonstrated segmental dyskinesis and regional myocardial perfusion. Circula¬tion 52: 1097–1103, 1975.

    CAS  Google Scholar 

  42. Meltzer RS, Woythaler JN, Buda AJ, Griffin JC, Harrison WD, Martin RP, Harrison DC, Popp RL: Two-dimensional echocardiographic quantification of infarct size alteration by phar¬macologic agents. Am J Cardiol 44: 257–262, 1979.

    Article  PubMed  CAS  Google Scholar 

  43. Meltzer RS, Woythaler JN, Buda AJ, Griffin JC, Kernoff R, Harrison DC, Popp RL, Martin RP: Non-invasive quantification of experimental canine myocardial infarct size using two-dimensional echocardiography. Eur J Cardiol 11: 215–225, 1980.

    PubMed  CAS  Google Scholar 

  44. Wyatt HL, Meerbaum S, Heng MK, Rit H, Gueret P, Corday E: Experimental evaluation of the extent of myocardial dyssynergy and infarct size by two-dimensional echocardiography. Circula¬tion 63: 607–614, 1981.

    Article  CAS  Google Scholar 

  45. Lieberman AN, Weiss JL, Jugdutt BI, Becker LC, Bulkley BH, Garrison JG, Hutchins GM, Kallman CA, Weisfeldt ML: Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63: 739–746, 1981.

    Article  PubMed  CAS  Google Scholar 

  46. Nieminen M, Parisi AF, O’Boyle JE, Folland ED, Khuri S, Kloner RA: Serial evaluation of myocardial thickening and thinning in acute experimental infarction: identification and quan-tification using two-dimensional echocardiography Circulation 66: 174–180, 1982.

    CAS  Google Scholar 

  47. Henschke CI, Risser TA, Sandor T, Hanlon WB, Neumann A, Wynne J: Quantitative compu-ter-assisted analysis of left ventricular wall thickening and motion by 2-dimensional echocar-diography in acute myocardial infarction. Ann J Cardiol 52: 960–964, 1983.

    Article  CAS  Google Scholar 

  48. O’Boyle JE, Parisi AF, Nieminen M, Kloner RA, Khuri S: Quantitative detection of regional left ventricular contraction abnormalities by 2-dimensional echocardiography. Am J Cardiol 51: 1732–1738, 1983.

    Article  PubMed  Google Scholar 

  49. Pandian NG, Koyanagi S, Skorton DJ, Collins SM, Eastham CL, Kieso RA, Marcus ML, Kerber RE: Relations between 2-dimensional echocardiographic wall thickening abnormalities, myocardial infarct size and coronary risk area in normal and hypertrophied myocardium in dogs. Am J Cardiol 52: 1318–1325, 1983.

    Article  PubMed  CAS  Google Scholar 

  50. Blumenthal DS, Becker LC, Bulkley BH, Hutchins GM, Weisfeldt ML, Weiss JL: Impaired function of salvaged myocardium: two-dimensional echocardiographic quantification of re-gional wall thickening in the open-chest dog. Circulation 67: 225–233, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA: Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol 1: 1047–1055, 1983.

    Article  PubMed  CAS  Google Scholar 

  52. Pandian NG, Kerber RE: Two-dimensional echocardiography in experimental coronary ste-nosis. Circulation 66: 597–602, 1982.

    Article  PubMed  CAS  Google Scholar 

  53. Pandian NG, Kieso RA, Kerber RE: Two-dimensional echocardiography in experimental coronary stenosis. II. Relationship between systolic wall thinning and regional myocardial perfusion in severe coronary stenosis. Circulation 66: 603–611, 1982.

    Article  PubMed  CAS  Google Scholar 

  54. Theroux P, Franklin D, Ross J Jr, Kemper WS: Regional myocardial function during acute coronary occlusion and its modification by pharmacologic agents in the dog. Circ Res 35: 896–908, 1974.

    PubMed  CAS  Google Scholar 

  55. Gallagher KP, Kumada T, Kaziol JA, McKown MD, Kemper WS, Ross J Jr: Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthe-tized dogs. Circulation 62: 1266–1274, 1980.

    PubMed  CAS  Google Scholar 

  56. Sasayama S, Gallagher KP, Kemper WS, Franklin D, Ross J Jr: Regional left ventricular wall thickness early and later after coronary occlusion in the dog. Am J Physiol 240: H293-H299, 1981.

    PubMed  CAS  Google Scholar 

  57. Weiss RJ, Buda AJ, Pasyk S, O’Neill WW, Keyes JW Jr, Pitt B: Non-invasive quantification of jeopardized myocardial mass using two-dimensional echocardiography and thallium-201 to-mography. Am J Cardiol 52: 1340–1344, 1983.

    Article  PubMed  CAS  Google Scholar 

  58. Buda AJ, Pasyk S, LeMire S, Smith DN, O’Neill WW, Keyes JW Jr, Pitt B: Immediate recovery of ischemic left ventricular regional function following coronary reperfusion: assessment by two- dimensional echocardiography. Clin Res (abstr) 31: 171A, 1983.

    Google Scholar 

  59. Buda AJ, Pasyk S, Keyes JW Jr, Pitt B: Interrelation of myocardial function and perfusion following coronary occlusion and reperfusion. Circulation (abstr) 68 (III): III-255, 1983.

    Google Scholar 

  60. Ellis SG, Wynne J, Braunwald E, Henschke CI, Sandor T, Kloner R: Response of reperfusion — salvaged, stunned myocardium to inotropic stimulation. Am Heart J 107: 13–19, 1984.

    Article  PubMed  CAS  Google Scholar 

  61. Theroux P, Ross J Jr, Franklin D, Kemper WS, Sasayama S: Coronary artery reperfusion. III. Early and late effects on regional myocardial function and dimensions in conscious dogs. Am J Cardiol 38: 599–606, 1976.

    Article  PubMed  CAS  Google Scholar 

  62. Gueret P, Meerbaum S, Corday E, Uchiyama T, Wyatt HL, Broffman J: Differential effects of nitroprusside on ischemic and non-ischemic myocardial segments demonstrated by compuTer-assisted two-dimensional echocardiography. Am J Cardiol 48: 59–68, 1981.

    Article  PubMed  CAS  Google Scholar 

  63. Shimoura K, Meerbaum S, Sakamaki T, Kondo S, Fishbein MC, Y-Rit J, Tei C, Shah PM, Corday E: Relation between functional response to nitroglycerin and extent of myocardial necrosis in dogs: mapping of the left ventricle by 2-dimensional echocardiography. Am J Cardiol 52: 177–183, 1983.

    Article  PubMed  CAS  Google Scholar 

  64. Uchiyama T, Corday E, Meerbaum S, Lang T, Gueret P, Povzhitkov M, Peter T: Characterization of left ventricular mechanical function during arrhythmias with two-dimensional echocardiography. I. Premature ventricular contractions. Am J Cardiol 48: 679–689, 1981.

    Article  PubMed  CAS  Google Scholar 

  65. Torres MAR, Corday E, Meerbaum S, Sakamaki T, Peter T, Uchiyama T: Characterization of left ventricular mechanical function during arrhythmias by two-dimensional echocardiography. II. Location of the site of onset of premature ventricular systoles. J Am Coll Cardiol 1: 819–829, 1983.

    Article  PubMed  CAS  Google Scholar 

  66. Clayton PD, Jeppson GM, Klausner SC: Should a fixed external reference system be used to analyze left ventricular wall motion? Circulation 65: 1518–1521, 1982.

    Article  PubMed  CAS  Google Scholar 

  67. Bookstein FL, Buda AJ: Mean tensor analysis of cardiac wall motion: a quantitative, coordinate-free approach to regional left ventricular function. Clin Res (abstr) 31: 169A, 1983.

    Google Scholar 

  68. Bookstein FL: The measurement of biological shape and shape change. Lecture Notes in Biomathematics, Vol 24. Springer-Verlag, New York, 1978.

    Google Scholar 

  69. Rankin JS, McHale PAS, Arentzen CE, Ling D, Greenfield JC, Anderson RW; The three-dimensional geometry of the left ventricle in the conscious dog. Circulation 39: 304–313, 1976.

    CAS  Google Scholar 

  70. Weber KT, Hawthorne EW: Descriptor and determinants of cardiac shape: an overview. Federation Proc 40: 2005–2010, 1981.

    CAS  Google Scholar 

  71. Janicki JS, Weber KT, Shroff S: Regional and global shape and size of the intact myocardium. Federation Proc 40: 2017–2022, 1981.

    CAS  Google Scholar 

  72. Olsen CO, Van Tright P, Rankin JS: Dynamic geometry of the intact left ventricle. Federation Proc 40: 2023–2030, 1981.

    CAS  Google Scholar 

  73. Streeter DD, Spotnitz MN, Patel DJ, Ross J, Sonnenblick EH: Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24: 339–347, 1969.

    PubMed  Google Scholar 

  74. Streeter DD, Hanna WI: Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry. Circ Res 33: 639–655, 1973.

    PubMed  Google Scholar 

  75. Streeter DD, Hanna WI: Engineering mechanics for successive stages in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ Res 33: 656–664, 1973.

    PubMed  Google Scholar 

  76. Weiss JL, Eaton LW, Manghan WL, Brinker JA, Bulkey B, Guzman P, Yiu FCP: Ventricular size and shape by two-dimensional echocardiography. Federation Proc 40: 2031–2036, 1981.

    CAS  Google Scholar 

  77. Brinker JA, Weiss JL, Lappe DL, Robson JL, Summer WK, Permutt S, Weisfeldt ML: Leftward septal displacement during right ventricular loading in man. Circulation 61: 626–633, 1980.

    PubMed  CAS  Google Scholar 

  78. Eaton LW, Weiss JL, Bulkley BH, Garrison JB, Weisfeldt ML: Regional cardiac dilatation after acute myocardial infarction: recognition by two-dimensional echocardiography. N Engl J Med 300: 57–62, 1979.

    Article  PubMed  CAS  Google Scholar 

  79. Geiser EA, Lupkiewicz SM, Chirstie LG, Ariet M, Conetta DA, Conti CR: A framework for three-dimensional time-varying reconstruction of the human left ventricle: sources of error and estimation of their magnitude. Computers and Biomed Res 13: 225–241, 1980.

    Article  CAS  Google Scholar 

  80. Moritz WE, Medema DK, McCabe D, Pearlman AS: Three-dimensional imaging and volume determination using a series of two-dimensional ultrasonic scans. Echocardiology. Martinus Nijhoff, The Hague, 1981, p 449.

    Google Scholar 

  81. Geiser EA, Ariet M, Conetta DA, Lupkiewicz SM, Christie LG Jr, Conti CR: Dynamic three- dimensional echocardiographic reconstruction of the intact human left ventricles: technique and initial observations in patients. Am Heart J 103: 1056–1065, 1982.

    Article  PubMed  CAS  Google Scholar 

  82. Meltzer RS, Roelandt J (eds): Contrast echocardiography. Martinus Nijhoff, The Hague, 1982.

    Google Scholar 

  83. Armstrong WF, Mueller TM, Kinney EL, Tickner EG, Dillon JC, Feigenbaum H: Assessment of myocardial perfusion abnormalities with contrast-enhanced two-dimensional echocardiography. Circulation 66: 166–173, 1982.

    Article  PubMed  CAS  Google Scholar 

  84. DeMaria AN, Bommer WJ, Riggs K et al.: Echocardiographic visualization of myocardial perfusion by left heart and intracoronary injections of echo contrast agents. Circulation (abstr) 60 (II): 11–143, 1980.

    Google Scholar 

  85. Kemper AJ, O’Boyle JE, Sharma S, Cohen CA, Kloner RA, Khuri SF, Parisi AF: Hydrogen peroxide contrast-enhanced two-dimensional echocardiography: real-time in vivo delineation of regional myocardial perfusion. Circulation 68: 603–611, 1983.

    Article  PubMed  CAS  Google Scholar 

  86. Tei C, Kondo S, Meerbaum S, Ong K, Maurer G, Wood F, Sakamaki T, Shimoura K, Corday E, Shah PM: Correlation of myocardial echo contrast disappearance rate (‘washout’) and severity of experimental coronary stenosis. J Am Coll Cardiol 3: 39–46, 1984.

    Article  PubMed  CAS  Google Scholar 

  87. Maurer G, Ong K, Haendchen R, Torres M, Tei C, Wood F, Meerbaum S, Shah P, Corday E: Myocardial contrast two-dimensional echocardiography: comparison of contrast disappearance rates in normal and underperfused myocardium. Circulation 69: 418–429, 1984.

    Article  PubMed  CAS  Google Scholar 

  88. Feinstein SB, Ten Cate FJ, Zwehl W, Ong K, Maurer G, Tei C, Shah PM, Meerbaum S, Corday E: Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol 3: 14–20, 1984.

    Article  PubMed  CAS  Google Scholar 

  89. Sakamaki T, Tei C, Meerbaum S, Shimoura K, Kondo S, Fishbein MC, Y-Rit J, Shah PM, Corday E: Verification of myocardial contrast two-dimensional echocardiographic assessment of perfusion defects in ischemic myocardium. J Am Coll Cardiol 3: 34–38, 1984.

    Article  PubMed  CAS  Google Scholar 

  90. Bommer WJ, Shah PM, Allen H, Meltzer R, Kisslo J: The safety of contrast echocardiography: report of the committee on contrast echocardiography for the American Society of Echocardiography. J Am Coll Cardiol 3: 6–13, 1984.

    Article  PubMed  CAS  Google Scholar 

  91. Bhandari AK, Nanda NC: Myocardial texture characterization by two-dimensional echocar-diography. Am J Cardiol 51: 817–825, 1983.

    Article  PubMed  CAS  Google Scholar 

  92. Chivers RC: Tissue characterization. Ultrasound Med Biol 7: 1–20, 1980.

    Article  Google Scholar 

  93. Mimbs JW, Yuhas DE, Miller JG, Weiss AN, Sobel BE: Detection of myocardial infarction based on altered attenuation of ultrasound. Circ Res 41: 192–198, 1977.

    PubMed  CAS  Google Scholar 

  94. Mimbs JW, O’Donnell M, Miller JG, Sobel BE: Changes in ultrasonic attenuation indicative of early myocardial ischemic injury. Am J Physiol 236: H340-H344, 1979.

    PubMed  CAS  Google Scholar 

  95. Mimbs JW, O’Donnel M, Bauwens D, Miller JG, Sobel BE: The dependence of ultrasonic attenuation and backscatter on collagen content in dog and rabbit hearts. Circ Res 47: 49–58, 1980.

    PubMed  CAS  Google Scholar 

  96. Mimbs JW, Bauwens D, Cohen RD, O’Donnell M, Miller JG, Sobel BE: Effects of myocardial ischemia on quantitative ultrasonic backscatter and identification of responsible determinants. Circ Res 49: 89–96, 1981.

    PubMed  CAS  Google Scholar 

  97. Mimbs JW, O’Donnel M, Miller JG, Sobel BE: Detection of cardiomyopathic changes induced by doxorubicin based on quantitative analysis of ultrasonic backscatter. Am J Cardiol 47: 1056–1060, 1981.

    Article  PubMed  CAS  Google Scholar 

  98. Skorton DJ, Melton HE Jr, Pandian NG, Nichols J, Koyanagi NS, Marcus ML, Collins SM, Kerber RE: Detection of acute myocardial infarction in closed-chest dogs by analysis of regional two-dimensional echocardiographic gray-level distributions. Circ Res 52: 36–44, 1983.

    PubMed  CAS  Google Scholar 

  99. Skorton DJ, Collins SM, Nichols J, Pandian NG, Bean JA, Kerber RE: Quantitative texture analysis in two-dimensional echocardiography: application to the diagnosis of experimental myocardial contusion. Circulation 68: 217–223, 1983.

    Article  PubMed  CAS  Google Scholar 

  100. Parisi AF, Nieminen M, O’Boyle JE, Moynhan PF, Khuri SF, Kloner RA, Folland ED, Schoen FJ: Enhanced detection of the evolution of tissue changes after acute myocardial infarction using color-encoded two-dimensional echocardiography. Circulation 66: 764–770, 1982.

    Article  PubMed  CAS  Google Scholar 

  101. Flax SW, Glover GH, Pelc NJ: Textural variations in B-mode ultrasonography; a stochastic model. Ultrasonic Imaging 3: 235–257, 1981.

    Article  Google Scholar 

  102. Skorton DJ, Collins SM, Woskoff SD, Bean JA, Melton HE: Range- and azimuth-dependent variability of image texture in two-dimensional echocardiograms. Circulation 68: 834–840, 1983.

    Article  PubMed  CAS  Google Scholar 

  103. Melton HE Jr, Skorton DJ: Rational gain compensation for attenuation: a step toward quantitative two-dimensional echocardiography. Am J Cardiol (abstr) 49: 931, 1982.

    Article  Google Scholar 

  104. Cohen RD, Mottley JG, Miller JG, Kurnik PB, Sobel BE: Detection of ischemic myocardium in vivo through the chest wall by quantitative ultrasonic tissue characterization. Am J Cardiol 50: 838–843, 1982.

    Article  PubMed  CAS  Google Scholar 

  105. Green SE, Joynt LF, Fitzgerald PJ, Rubenson DS, Popp RL: In vivo ultrasonic tissue characterization of human intracardiac masses. Am J Cardiol 51: 231–236, 1983.

    Article  PubMed  CAS  Google Scholar 

  106. Joynt LF: A stochastic approach to ultrasonic tissue characterization. Technical report G557–4, Integrated Circuits Laboratory, Stanford Electronics Laboratories, Stanford University, Stanford, CA, 1979.

    Google Scholar 

  107. Meyer CR: Preliminary results on a system for wideband, reflectionmode, ultrasonic attenuation imaging. IEEE Trans Sonics and Ultrasonics 29: 12–17, 1982.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publisher, Dordrecht

About this chapter

Cite this chapter

Buda, A.J., Delp, E.J. (1985). Digital two-dimensional echocardiography. In: Buda, A.J., Delp, E.J. (eds) Digital Cardiac Imaging. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4996-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4996-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8712-4

  • Online ISBN: 978-94-009-4996-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics