Skip to main content

Material and structural limitations in a 3-D finite element model of the left ventricle

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 43))

Abstract

A short chronological review of the diverse available mechanical models of the LV precedes a critical reassessment of the various main factors involved in a finite element analysis of the ventricle. These factors constitute the three-dimensional geometry of the LV and its kinematical boundary conditions; the extent of the deformation the ventricle undergoes; the pressure distribution on the endocardium; the myocardial constitutive law as well as its anisotropy, and the activation mechanism of the muscle. A rationale for developing an improved finite element model, gradually incorporating these factors, concludes the presentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arts T, Reneman RS, Veenstra PC (1979) A model of the mechanics of the left ventricle. Ann Biomed Eng 7: 299–318

    Article  PubMed  CAS  Google Scholar 

  • Chadwick RS (1982) Mechanics of the left ventricle. Biophys J 39: 279–288

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Kwak BM, Rim K, Falsetti HL (1980) A model for an active left ventricle deformation — formulation of a nonlinear quasi-steady finite-element analysis for orthotropic, three-dimensional myocardium. Int Conf Finite Elements in Biomechanics 2: 639–655

    Google Scholar 

  • Feit TS (1979) Diastolic pressure-volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle. Biophys J 28: 143–166

    Article  PubMed  CAS  Google Scholar 

  • Ghista ND, Sandler HD (1968) An elastic viscoelastic model for the shape and the forces in the left ventricle. J Biomechanics 2: 35–47

    Article  Google Scholar 

  • Ghista DN, Hamid MS (1977) Finite-element stress analysis of the human left ventricle whose irregular shape is developed from single plane cineangiocardiogram. Comp Prog Biomed 7: 219–231

    Article  CAS  Google Scholar 

  • Ghista DN, Ray G, Sandler H (1980) Cardiac assessment mechanics: 1. Left ventricular mecha- nomycardiography, a new approach to the detection of diseased myocardial elements and states. Med Biol Eng and Comp 18: 271–280

    Article  CAS  Google Scholar 

  • Gould P, Ghista D, Brombolich L, Mirsky J (1972) In-vivo stresses in the human left ventricular wall: analysis accounting for the irregular 3-dimensional geometry and comparison with idealised geometry analyses. J Biomechanics 5: 521–539

    Article  CAS  Google Scholar 

  • Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fiber architecture in man. B Heart J 45: 248–263

    Article  CAS  Google Scholar 

  • Gunton MC, Rosten HJ, Spalding DB, Tatchell DG (1983) Phoenics, an instruction manual. CHAM TR/75

    Google Scholar 

  • Hadingham PT (1983) The stress state in the human left ventricle. Adv Cardiovascular Phys 5: 88–105

    Google Scholar 

  • Heethaar RM, Pao YC, Ritman EL (1977) Computer aspects of three-dimensional finite-element: analysis of stresses and strains in the intact heart. Comp and Biomed Res 10: 291–295

    Google Scholar 

  • Horowitz A, Perl M, Sideman S: Minimization of fiber length changes and mechanical work in the heart muscle. Submitted for publication

    Google Scholar 

  • Janz RF, Kubert BR, Moriarty TF, Grimm AF (1974) Deformation of the diastolic left ventricle-II. Nonlinear Geometric Effects. J Biomechanics 7: 509–516

    Article  CAS  Google Scholar 

  • Mirsky I (1969) Left ventricular stresses in the intact human heart. Biophys J 9: 189–208

    Article  PubMed  CAS  Google Scholar 

  • Neckyfarow CW, Perlman AB (1976) Deformation of the human left ventricle: material and geometric effects. Proc 4th New-England Bioeng Conf, 169–172

    Google Scholar 

  • Panda SC, Natarajan R (1977) Finite-element method of stress analysis in the human left ventricular layered wall structure. Med Biol Eng Comp 15: 67–71

    Article  CAS  Google Scholar 

  • Pao YC, Ritman EL, Wood EH (1974) Finite-element analysis of left ventricular myocardial stresses. J Biomechanics 7: 469–477

    Article  CAS  Google Scholar 

  • Pao YC, Robb RA, Ritman EL (1976) Plane-strain finite-element analysis of reconstructed diastolic left ventricular cross section. Ann Biomed Eng 4: 232–249

    Article  PubMed  CAS  Google Scholar 

  • Pao YC, Ritman EL (1977) Viscoelastic, fibrous, finite-element, dynamic analysis of beating heart. Proc Symp Appl Comp Meth, 477–486

    Google Scholar 

  • Pao YC, Nagendra GK, Padiyar R, Ritman EL (1980) Derivation of myocardial stiffness equation based on theory of laminated composites. J Biomech Eng 102: 252–257

    Article  PubMed  CAS  Google Scholar 

  • Peskin CS (1975) Mathematical aspects of heart physiology. Courant Institute of Mathematical Sciences, New York

    Google Scholar 

  • Pinto JG, Fung YC (1973) Mechanical properties of the heart muscle in the passive state. J Biomechanics 6: 597–616

    Article  CAS  Google Scholar 

  • Ritman EL, Kinsey JH, Robb RA, Gilbert BK, Harris LD, Wood EH (1980) Three-dimensional imaging of heart, lung and circulation. Science 210: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Ross AL (1972) A finite element computer program for the nonlinear structural analysis of the heart. General Electric Report No. 72SD213

    Google Scholar 

  • SAP7, User Manual, 1982 Structural mechanics computer laboratory, University of Southern California

    Google Scholar 

  • Sonnenblick EH, Skelton CL, Spotnitz WD, Feldman D (1963) Redefinition of the Ultrastructural basis of cardiac length-tension relations. Circ 48

    Google Scholar 

  • Streeter DD, Ramesh N, Vaishnav DJP, Spotnitz HM, Ross J, Sonnenblick EH (1970) Stress distribution in the canine left ventricle during diastole and systole. Biophys J 10: 345–363

    Article  PubMed  Google Scholar 

  • Streeter DD (1979) Gross morphology and fiber geometry of the heart. In: RM Berne et al. (eds) Handbook of Physiology, Section 2: The Cardiovascular System, Vol. 1, The Heart, Bethesda Md, American Physiological Society

    Google Scholar 

  • Tozeren A (1983) Static Analysis of the Left Ventricle. J Biomech Eng 105:39–46

    Article  PubMed  CAS  Google Scholar 

  • Yettram AL, Vinson CA (1979) Geometric Modelling of the human left ventricle. J Biomech Eng 101: 1221–1223

    Google Scholar 

  • Yettram AL, Vinson CA, Gibson DG (1983) Effect of myocardial fiber architecture on the behavior of the human left ventricle in diastole. J Biomed Eng 5: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Wong YK, Rautaharju PM (1968) Stress distribution within the left ventricle wall approximated as a thick ellipsoidal shell. Am Heart J 75: 649–662

    Article  PubMed  CAS  Google Scholar 

  • Wong YK (1973) Myocardial mechanics: application of sliding-filament theory to isovolumic contraction of the left ventricle. J Biomechanics 6: 565–581

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Perl, M., Horowitz, A. (1985). Material and structural limitations in a 3-D finite element model of the left ventricle. In: Sideman, S., Beyar, R. (eds) Simulation and Imaging of the Cardiac System. Developments in Cardiovascular Medicine, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4992-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4992-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8710-0

  • Online ISBN: 978-94-009-4992-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics