Skip to main content

Simulation of the cardiac electrical activity sequence using 3-D stochastically distributed parameters

  • Chapter
  • 70 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 43))

Abstract

This report outlines our efforts, present and future, of studying a model of the cardiac electrical propagation processes. The objectives of the study are: (1) to develop a model of the cardiac conduction system and the myocardial cellular electrical activity, in which the cell parameters obey a predetermined random distribution, (2) simulate the propagation of the electrical activity in the 3-D true geometry model of the left ventricle (LV), (3) test the sensitivity of the model parameters in the range of values reported for normal hearts, (4) generate pathological activities, like premature beats, tachycardia, alternans and fibrillation, by introducing cellular parameters found in a diseased hearts, (5) determine the time of activation of each point in the myocardial space, (6) calculate the body surface potential maps according to reported transfer characteristics, (7) evaluate the model’s performance by comparing its sequence of body surface potential maps to experimentally and clinically generated maps. Results of down-scaled elemental models demonstrate that such models with randomly distributed parameters may initiate unpredictably premature beats, tachycardias and other pathologies. Thus, the 3-D polygonal model is expected to generate, with great spatial detail, the normal as well as pathological unstable electrical activities, and under these conditions represent the different patterns of dynamic, time varying body surface potential maps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abildskov JA, Evans AK, Burgess MJ (1980) Ventricular recovery properties and QRST deflection in cardiac electrograms. A J Physiol 239:H227–231

    Google Scholar 

  • Adam DR, Akselrod S, Cohen RJ (1981) Estimation of ventricular vulnerability to fibrillation through T-wave time series analysis. Comp in Card 307–310

    Google Scholar 

  • Adam DR, Powell AO, Gordon H, Cohen RJ (1982) Ventricular fibrillation and fluctuations in the magnitude of the repolarization vector. Comp in Card 241–244

    Google Scholar 

  • Barr RC, Ramsey M, Spach MS (1977) Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans. Bio-Med Eng BME- 24:1–11

    CAS  Google Scholar 

  • Brody D, Arzbaecher R (1964) A comparative analysis of severall correlated vectorcardiographic leads. Circulation 39: 533–542

    Google Scholar 

  • Burger HC, van Milaan JB (1946) Heart vector and leads. British Heart J 8: 157

    Article  Google Scholar 

  • Cuffin BN, Geselowitz DB (1977) Studies of the electrocardiogram using realistic cardiac and torso models. IEEE Trans Bio-Med Eng. BME-24: 242–252

    Google Scholar 

  • Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC (1970) Total excitation of the isolated human heart. Circulation 41: 899–912

    PubMed  CAS  Google Scholar 

  • Einthoven W, Farh G, deWaart A (1913) Pflugers Arch ges Physiol., 150: 275–315

    Article  Google Scholar 

  • Frank E (1952) Electric potential produced by two point sources in a homogeneous conducting sphere. J Appl Phys 23: 1225–1228

    Article  Google Scholar 

  • Han J (1969) Ventricular vulnerability during acute coronary occlusion. Am J Card 24: 857–864

    Article  PubMed  CAS  Google Scholar 

  • Han J, Moe GK (1964) Nonuniform recovery of excitability in ventricular muscle. Circ Res 14: 44–60

    PubMed  CAS  Google Scholar 

  • Han J, de-Jalon PG, Moe GK (1964) Adrenergic effects on ventricular vulnerability. Circ Res 14: 516–520

    PubMed  CAS  Google Scholar 

  • Han J, Millet D, Chizzonitti B, Moe GK (1966) Temporal dispersion of recovery of excitability in atrium and ventricle as function of heart rate. Am Hear J 71: 481–487

    Article  CAS  Google Scholar 

  • Hersh LT, Barr RC, Spach MS (1978) An analysis of transfer coefficients calculated directly from epicardial and body surface potential measurements in the intact dog. IEEE Trans Bio-Med Eng BME-25: 446–461

    Google Scholar 

  • Holt JH, Barnard ACL, Lynn MS (1969) A study of the human heart as a multiple dipole electrical source. Circulation 40: 697–710

    PubMed  Google Scholar 

  • Horan LG, Hand C, Johnson JC, Sridharan MR, Rankin TB, Flowers NC (1978) A theoretical examination of ventricular repolarization and the secondary T wave. Circ Res 42: 750–757

    PubMed  CAS  Google Scholar 

  • Mandel WJ, Burgess MJ, Neville J, Abildskov J A (1968) Analysis of T waveform abnormalities associated with myocardial infarction using a theoretical model. Circulation 38: 178–188

    PubMed  CAS  Google Scholar 

  • Moe GK, Abildskov JA, Han J (1964) Factors responsible for initiation and maintenance of ventricular fibrillation. In ‘Sudden Cardiac Death’, NY Grune & Stratton 56–63

    Google Scholar 

  • Nielsen BL (1973) ST-segment elevation in acute myocardial infarction: Prognostic importance. Circulation 48: 338–345

    PubMed  CAS  Google Scholar 

  • Miller WT, Geselowitz DB (1978) Simulation studies of the electrocardiogram. Circ Res 43: 301–315

    PubMed  CAS  Google Scholar 

  • Muler AL, Markin VS (1978) Electrical properties of anisotropic nerve-muscle syncytia. Biophysic 22: 536–541

    Google Scholar 

  • Plonsey R (1974) The formulation of bioelectric source-field relationships in terms of surface discon-tinuities. J Franklin Inst 297: 317–324

    Article  Google Scholar 

  • Ramsey III, Barr RC, Spach MS (1977) Comparison of measured torso potentials with those simulated from epicardial potentials for ventricular depolarization and repolarization in the intact dog. Circ Res 41: 660–672

    PubMed  Google Scholar 

  • Scher AM, Young AC (1956) The pathway of ventricular depolarization in the dog. Circ Res 4:461–469

    PubMed  CAS  Google Scholar 

  • Scher AM, Young AC (1956-7) Ventricular depolarization and the genesis of QRS. Ann NY Acad Sci 65: 768

    Article  Google Scholar 

  • Schwarz PJ, Malliani A (1975) Electrical alternation of the T wave. Am Heart J 89: 45–50

    Article  Google Scholar 

  • Selvester RH, Solomon JC, Gillespie TL (1968) Digital Computer model of a total body electrocardiographic surface map. Circ 38: 684–690

    CAS  Google Scholar 

  • Selvester RH, Kalaba E, Collier CR, Bellman R, Kajiwada H (1965) Simulated myocardial infarction with a mathematical model of the heart containing distance and boundary effects. Proc LI Symp on Vector-cardiography, Queens, NY

    Google Scholar 

  • Smith JM (1982) Finite element model of ventricular dysrhythmias. MSc thesis, MIT Cambridge, Mass

    Google Scholar 

  • Spach MS, Barr RC (1975a) Ventricular intramural and epicardial potential distributions during ventricular activation and repolarization in the intact dog. Circ Res 37: 243–257

    CAS  Google Scholar 

  • Spach MS, Barr RC (1975b) Analysis of ventricular activation and repolarization from intramural and epicardial potential distributions for ectopic beats in the intact dog. Circ Res 37: 830–843

    CAS  Google Scholar 

  • Spach MS, Barr RC, Lanning CF (1977) Experimental basis for QRS and T wave potentials in the WPW syndrome. Circ Res 42: 103–118

    Google Scholar 

  • Wilson FN, Macleod AG, Barker PS, Johnson FD (1934) The determination and significance of the areas of the ventricular deflections of the electrocardiogram. Am Heart J 10: 46–61

    Article  Google Scholar 

  • Wilson C, Pantridge JF (1973) ST-segment displacement and early hospital discharge in acute myocardial infarction. Lancet 2: 1284–1288

    Article  PubMed  CAS  Google Scholar 

  • Yanowitz F, Preston JB, Abildskov JA (1966) Function distribution of right and left stellate innervation to the ventricles. Circ. Res. 18:416–428

    PubMed  CAS  Google Scholar 

  • Zalter R, Sadik E (1961) Prognostic significance of the magnitude of ST segment shift in myocardial infarction. Circulation 24:1075–1076

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Adam, D. (1985). Simulation of the cardiac electrical activity sequence using 3-D stochastically distributed parameters. In: Sideman, S., Beyar, R. (eds) Simulation and Imaging of the Cardiac System. Developments in Cardiovascular Medicine, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4992-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4992-8_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8710-0

  • Online ISBN: 978-94-009-4992-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics