Skip to main content

Sediment Transport due to Waves and Tidal Currents

  • Conference paper
Seabed Mechanics

Abstract

The paper reviews existing methods for the prediction of sediment transport under the action of combined waves and currents, and presents the results of an experimental programme aimed at verifying some of the main assumptions implicit in such methods. A logarithmic layer is confirmed to exist in the turbulent oscillatory boundary layer, and bed shear stresses and roughness lengths are compared favourably with theoretical estimates. Field observations of sediment transport under combined waves and tidal currents are shown to be predicted with the use of an appropriate power law.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackers, P. and White, W. R., 1980. Bed material transport: a theory for total load and its verification. Int. Symp. River Sedimentation,Beijing.

    Google Scholar 

  • Anwar, H. O. and Atkins, R., 1980. Turbulence measurements in simulated tidal flow. J. Hydraul. Div. ASCE, (HY8), 1273–1289.

    Google Scholar 

  • Bakker, W. T. and Van Boom, Th., 1978. Near bottom velocities in waves with a current. Proc. 16th Conf. Coastal Engineering Hamburg, Paper 110.

    Google Scholar 

  • Bagnold, R. A., 1946. Motion of waves in shallow water: interaction between waves and sand bottoms. Proc. Roy. Soc., Ser. A, 187, 1–55.

    Article  Google Scholar 

  • Bijker, E. W., 1967. Some considerations about scales for coastal models with moveable bed. Delft Hydraul. Lab. Publ. 50.

    Google Scholar 

  • Bijker, E. W., 1971. Longshore transport computations. J. Waterways and Harbours ASCE, (WW4), 687–701.

    Google Scholar 

  • Bijker, E. W., Hijum, E. V. and Vellinger, P., 1976. Sand transport by waves. Proc. 15th Conf. Coastal Engineering Hawaii, Vol. 2, pp. 1149–1167.

    Google Scholar 

  • Bijker, E. W., 1980. Sedimentation in channels and trenches. Proc. 17th Conf. Coastal Engineering, Sydney.

    Google Scholar 

  • Brebner, A., 1980. Sand bed-form lengths under oscillatory flow. Proc. 17th Conf. Coastal Engineering,Sydney, pp. 1340–1341.

    Google Scholar 

  • Brink-Kjaer, O. and Jonsson, I. G., 1975. Radiation stress and energy flux in water waves on a shear current. Inst. Hydrodyn. Hydraul. Engng Tech. Univ. Denmark, Prog. Rep. 36, pp. 27–32.

    Google Scholar 

  • Christoffersen, J. B. 1980. A simple turbulence model for a three-dimensional wave motion on a rough bed. Internal Rep. No. I, Inst. Hydrodyn. Hydraul., Tech Univ Denmark.

    Google Scholar 

  • Englund, F. and Hansen, E., 1967. A Monograph on Sediment Transport in Alluvial Streams. Teknisk Vorlag, Copenhagen.

    Google Scholar 

  • George, C. B. and Sleath, J. F. A., 1979. Measurements of combined oscillatory and steady flow over a rough bed. J. Hydraul Res., 17, 303–313.

    Article  Google Scholar 

  • Graaf, J. van de and Overeem, J. van, 1979. Evaluation of sediment transport formulae in coastal engineering practice. Coastal Engng, 3, 1–32.

    Article  Google Scholar 

  • Grant, W. D. and Madsen, O. S., 1979. Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84, 1797–1808.

    Article  Google Scholar 

  • Grass, A. J., 1971. Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech.,50, 233–255.

    Article  Google Scholar 

  • Ikeda, S., 1980. Suspended sediment on sand ripples. Proc. 3rd Int. Symp. Stochastic Hydraulics, Tokyo, pp. 599–608.

    Google Scholar 

  • Inman, D. L. and Bowen, A. J., 1962. Flume experiments on sand transport by waves and current. Proc. 8th Coastal Engineering Conf., Mexico, pp. 137–150.

    Google Scholar 

  • Inman, D. L. and Tunstall, E. B., 1972. Phase dependent roughness control of sand movement. Proc. 13th Coastal Engineering Conf., Vancouver, pp. 1155–1171.

    Google Scholar 

  • Jonsson, I. G. 1965. Friction factor diagram for oscillatory boundary layers. Frog. Rep. 10,Coastal Engng Lab., Tech. Univ. Denmark.

    Google Scholar 

  • Jonsson, I. G., 1966. Wave boundary layers and friction factors. Proc. 10th Conf. Coastal Engineering, Tokyo.

    Google Scholar 

  • Jonsson, I, G., 1978. A new approach to oscillatory rough turbulent boundary layers. Inst. Hydrodyn. Hydraul,Engng, Tech. Univ. Denmark, Paper 17.

    Google Scholar 

  • Jonsson, I. G. and Carlsen, N. A., 1976. Experimental and theoretical investigation in an oscillatory turbulent boundary layer. J. Hydraul. Res., 14, 45–60.

    Article  Google Scholar 

  • Kajiura, K., 1968. A model of the bottom boundary layer in water waves. Bull. Earthquake Res. Insat.,46, 75–123.

    Google Scholar 

  • Kamphuis, J. W., 1978. Attenuation of gravity waves by bottom friction. Coastal Engng,2, 111–118.

    Article  Google Scholar 

  • Kana, T. W. and Ward, L. G., 1980. Nearshore suspended sediment load during storm and post-storm conditions. Proc. 17th Conf. Coastal Engineering, Sydney pp. 1158–1173.

    Google Scholar 

  • Kemp, P. H. and Simons, R. R., 1982. The interaction between waves and a turbulent current: waves propagating with the current. J. Fluid Mech. 116, 227–250.

    Article  Google Scholar 

  • Kemp, P. H. and Simons, R. R., 1983. The interaction of waves and a turbulent current: waves propagating against the current. J. Fluid Mech., 130, 73–89.

    Article  Google Scholar 

  • Laufer, J., 1950. Some recent measurements in a two-dimensional turbulent channel. J. Aeronaut. Sci., 20, 277–287.

    Google Scholar 

  • Mantz, P. A., 1980. Laboratory flume experiments on the transport of cohesionless silica silts by water streams. Proc. Instn Civ. Engrs,2 (69), 977–944.

    Article  Google Scholar 

  • Miles, G. V., 1981. Sediment Transport Models for Estuaries. Hydraulics Res. Stn. Pubin, Wallingford, UK.

    Google Scholar 

  • Nielsen, P., 1979. Some basic concepts of wave sedi ment transport. Ser. Pap. No. 20, Inst. Hydrodyn. Hydraul., Tech. Univ. Denmark.

    Google Scholar 

  • Nielsen, P., 1981. Dynamics and geometry of wave generated ripples. J. Geophys. Res., 86 (C7), 6467–6472.

    Article  Google Scholar 

  • Owen, M. W. and Thorn, M. F. C., 1971a. Effect of waves on sand transport by currents. Proc. 16th Conf. Coastal Engineering, Hamburg.

    Google Scholar 

  • Owen, M. W. and Thorn, M. F. C., 1978b. Sand Transport in Waves and Currents. Hydraul. Res. Stn, Annual Rep. HMSO, London.

    Google Scholar 

  • Russell, J. V. and Kemp, P. H., 1977. A suggestion of interaction of suspended sediment with turbulence in the Thames Estuary. Proc. 6th Autralasian Hydraulics and Fluid Mechanics Conf.,Adelaide.

    Google Scholar 

  • Sayao, O. F. and Kamphuis, J. W., 1982. Littoral sand transport. Review of the state of the art. C. E. Res. Rep. 78, Queens University, Ontario.

    Google Scholar 

  • Sleath, J. F. A., 1978. Measurements of bed load in oscillatory flow. Proc. ASCE, Waterways Port Coastal Ocean Div., 104 (WW4), 291–307.

    Google Scholar 

  • Soulsby, R. L. and Dyer, K. R., 1981. The form of the near-bed velocity profile in a tidally accelerating flow. J. Geophys. Res.,86 (C9), 8067–8074.

    Article  Google Scholar 

  • Soulsby, R. L., Davies, A. G. and Wilkinson, R. H., 1983. The detailed processes of sediment transport by tidal currents and by surface waves. Inst. Oceanogr Sci. Rep. 152.

    Google Scholar 

  • Swart, D. H., 1974. Offshore Sediment Transport and Equilibrium Beach Profiles. Pub. No. 131, Delft Hydraul, Lab.

    Google Scholar 

  • Thorn, M. F. C., 1981. Physical processes of siltation in tidal currents. Proc. Conf. Hydraulic Modelling in Maritime Engineering. Institution of Civil Engineers. London, pp. 65–75.

    Google Scholar 

  • White, W. R., Milli, H. and Crabbe, A. D., 1975. Sediment transport theories: a review. Proc. Instn Civ. Engrs,59, Pt 2, 265–292.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Bruce Denness

About this paper

Cite this paper

Kemp, P.H., Simons, R.R. (1984). Sediment Transport due to Waves and Tidal Currents. In: Denness, B. (eds) Seabed Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4958-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4958-4_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8697-4

  • Online ISBN: 978-94-009-4958-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics