Skip to main content

Postbuckling Failure of Composite Panels

  • Chapter
Composite Structures 3

Abstract

A series of postbuckling tests have been conducted on thin rectangular quasi-isotropic CFRP panels. The testing machine allowed careful control of panel loading and by using acoustic emission as a diagnosis it was possible to monitor the onset and progress of failure before compression collapse destroyed the evidence. The panels exhibited substantial post buckled strength, safely supporting at least twice their buckling load. Inspection of damaged panels revealed that post buckling failure was caused by the rapid growth of edge delamination from positions corresponding to a node line in the buckled mode shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pipes, R. B. and Pagano, N. J., Interlaminar stresses in composite laminates under uniform axial extension, J. Composite Materials, 4 (1970), 538.

    Google Scholar 

  2. Pipes, R. B. and Pagano, N. J., The influence of stacking sequence on laminate strength, J. Composite Materials, 5 (1971), 50.

    Article  Google Scholar 

  3. Leissa, A. W., Advances in vibration, buckling and postbuckling studies on composite plates, Composite Structures, London, Applied Science Publishers Ltd, 1981, p. 312.

    Google Scholar 

  4. Banks, w. M. et al., Experimental study of the nonlinear behaviour of composite panels, ICCM3, 1980, p. 372.

    Google Scholar 

  5. Vestergren, P. and Knutsson, L., Theoretical and experimental investigation of the buckling and postbuckling characteristics of flat carbon fibre reinforced plastic panels subjected to compression or shear loads, ICAS XI Congress, Proc., Vol. 1, 1978.

    Google Scholar 

  6. Samuelson, L. A. et al., Stability and ultimate strength of carbon fibre reinforced plastic panels, ICCM3, 1980, p. 327.

    Google Scholar 

  7. Spier, E. E., Stability of graphite/epoxy structures with arbitrary symmetrical laminates, Exp. Mech., Nov. 1978, 401.

    Google Scholar 

  8. Starnes, J. H. and Rouse, M., Postbuckling and failure characteristics of selected flat rectangular graphite epoxy plates loaded in compression, Proc. AIAA/ASME/ASCE/AHS 22nd Structures, Structural Dynamics and Materials Conf., Pt. 1, Apr. 1981, p. 423.

    Google Scholar 

  9. Ridgard, C., Shearand compression buckling of carbon fibre composites—final report, BAe-MSM-R-GEN-0468, Nov. 1981.

    Google Scholar 

  10. Ridgard, C., The effects of postbuckling behaviour upon the performanceof stability limited composite structures-5th progress report, BAe-MSM-RGEN-0509, Aug. 1983.

    Google Scholar 

  11. Pryor, C. W. and Barker, R. M., A finite element analysis including transverse shear effects for applications to laminated plates, AIAAJ, 9 (1971), 912.

    Article  Google Scholar 

  12. Srivinas, S. and Rao, A. K., Bending, vibration and buckling of simply supported thick orthotropic plates and laminates, Int. J. Solids Struct., 6 (1970), 1463.

    Article  Google Scholar 

  13. Pagano, N. J., Influence of shear coupling in cylindrical bending of anisotropic plates, J. Composite Materials, 4 (1970), 330.

    Article  Google Scholar 

  14. Whitney, J. M., The effect of transverse shear delamination on the bending of laminated plates, J. Composite Materials, 3 (1969), 534.

    Article  Google Scholar 

  15. Whitney, J. M., Stress analysis of thick laminated composite and sandwich plates, J. Composite Materials, 6 (1972), 426.

    Google Scholar 

  16. Noor, A. K., Stability of multilayered composite plates, Fibre Sci. Technol., 8 (1975), 81.

    Article  Google Scholar 

  17. Reissner, E., The effect of transverse-shear deformation on the bending of elastic plates, J. appl. Mech., 67 (1945).

    Google Scholar 

  18. Friedrichs, K. O., Kirchhoff’s boundary conditions, and the edge effect for elastic plates, Proc. Symp. appl. Math., Vol. 3, 1950.

    Google Scholar 

  19. Williams, D. G. and Walker, A. C., Design of deformed plates subject to compression, Proc. Inst. Civ. Engrs, 59, 1975 (Part 2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Buskell, N., Davies, G.A.O., Stevens, K.A. (1985). Postbuckling Failure of Composite Panels. In: Marshall, I.H. (eds) Composite Structures 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4952-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4952-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8695-0

  • Online ISBN: 978-94-009-4952-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics