Skip to main content

Electron Spin Resonance and Nuclear Magnetic Resonance Applied to Minerals

  • Chapter
Book cover Chemical Bonding and Spectroscopy in Mineral Chemistry

Abstract

It does not require great powers of advocacy to successfully argue the case that the application of the resonance spectroscopies, particularly electron spin resonance (ESR) and nuclear magnetic resonance (NMR), has been of major significance to the advance in the depth of understanding of chemical science which has occurred over the past two decades. Thus not only have the techniques been of value in a purely analytical context, but they have provided much structural information; they have given insight to the field of molecular dynamics, they have provided invaluable data for the determination of reaction kinetics and mechanism, and they produce data which can provide ever more stringent tests of theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atherton, N.M. (1973) Electron Spin Resonance, Halsted Press, London.

    Google Scholar 

  2. Abragam, A. and Bleaney, B. (1970) Electron Paramagnetic Resonance of Transition Metal Ions, Oxford University Press, London.

    Google Scholar 

  3. Symons, M. (1978) Chemical and Biochemical Aspects of Electron Spin Resonance Spectroscopy, Van Nostrand Reinhold, Wokingham.

    Google Scholar 

  4. Sands, R.H. (1955) Phys. Rev,99, 1222.

    Article  Google Scholar 

  5. Kneubühl, F.K. (1968) J. Chem. Phys.33, 1074.

    Article  Google Scholar 

  6. Adrian, F.J. (1968) J. Colloid Interface Sci.,26, 317.

    Article  Google Scholar 

  7. Gillespie, P.A. (1979) Ph.D. Thesis, University of Aston in Birmingham.

    Google Scholar 

  8. Meads, R.E. and Maiden, D.J. (1975) Clay Miner.,10, 313.

    Article  Google Scholar 

  9. Boesman, E. and Schoemaker, D. (1961) Compt. Rend.,252, 1931.

    Google Scholar 

  10. Jones, J.P.E., Angel, B.R. and Hall, P.L. (1974) Clay Miner.,10, 257.

    Article  Google Scholar 

  11. Monsef-Mirzai, P. and McWhinnie, W.R. (1982) Inorg. Chim. Acta,58, 143.

    Article  Google Scholar 

  12. Angel, B.R. and Hall, P.L. (1973) in Proc. Int. Clay. Conf., (1972) (ed. J. Serratosa). CSIO, Madrid, p. 71.

    Google Scholar 

  13. Brindley, G.W. and Nakahira, M. (1959) J. Am. Ceram. Soc.,42, 311.

    Article  Google Scholar 

  14. Angel, B.R., Jones, J.P.E. and Hall, P.L. (1974) Clay Miner.,10, 247.

    Article  Google Scholar 

  15. Angel, B.R, Cuttler, A.H, Richards, K.S. and Vincent, W.E.J. (1977) Clays Clay Miner.,25, 381.

    Article  Google Scholar 

  16. Olivier, J, Vedrine, J.C. and Pezerat, H. (1975) Bull. Group Franc. Argiles,21, 153.

    Google Scholar 

  17. Olivier, D, Vedrine, J.C. and Pezerat, H. (1975) Proc. Int. Clay Conf., Mexico, p. 231.

    Google Scholar 

  18. Olivier, D, Lauginie, P. and Fripiat, J.J. (1976) Chem. Phys. Lett.,40, 131.

    Article  Google Scholar 

  19. Olivier, D, Vedrine, J.C. and Pezerat, H. (1977) J. Solid State Chem.,20, 267.

    Article  Google Scholar 

  20. McBride, M.B, Pinnavaia, T.J. and Mortland, M.M. (1975) Clays Clay Miner.,23, 103.

    Article  Google Scholar 

  21. McBride, M.B, Pinnavaia, T.J. and Mortland, M.M. (1975) Clays Clay Miner.,23, 162.

    Article  Google Scholar 

  22. Berkheiser, V. and Mortland, M.M. (1975) Clays Clay Miner.,23, 404.

    Article  Google Scholar 

  23. Kasai, P.H. and Bishop, R.J. (1972) J. Am. chem. Soc.,94, 5560.

    Article  Google Scholar 

  24. Vedrine, J.C. and Naccache, C. (1973) Chem. Phys. Letters,18, 190.

    Article  Google Scholar 

  25. Kasai, P.H. (1965) J. Chem. Phys.,43, 3322.

    Article  Google Scholar 

  26. Kasai, P.H. and Bishop, R.J. Jr. (1973) J. Phys. Chem.,11, 2308.

    Article  Google Scholar 

  27. Olsen, D.H. (1968) J. Phys. Chem.,12, 4366.

    Article  Google Scholar 

  28. Kasai, P.H. and Bishop, R.J. Jr. (1976) in Zeolite Chemistry and Catalysis (ed. J.A. Rabo), American Chemical Society Monograph 171, p. 350.

    Google Scholar 

  29. McBride, M.B. (1977) Clays Clay Miner.,25, 6.

    Article  Google Scholar 

  30. Pinnavaia, T.J. (1982) Devel. Sedimentol,34(Adv. Tech. Clay Miner. Anal.), 139.

    Article  Google Scholar 

  31. McBride, M.B, Pinnavaia, T.J. and Mortland, M.M. (1975) J. Phys. Chem.,19, 2430.

    Article  Google Scholar 

  32. Clementz, D.M, Pinnavaia, T.J. and Mortland, M.M. (1973) J. Phys. Chem.,11, 196.

    Article  Google Scholar 

  33. McBride, M.B. and Mortland, M.M. (1974) Proc. Soil Sci. Soc. Amer.,38, 408.

    Article  Google Scholar 

  34. McBride, M.B. and Mortland, M.M. (1974) Proc. Soil Sci. Soc. Amer.,38, 408.

    Article  Google Scholar 

  35. Hathaway, B.J. and Billing, D.E. (1970) Co-ord. Chem. Rev,5, 143.

    Article  Google Scholar 

  36. Clearfeld, A. and Quayle, L.R. (1982) Inorg. Chem.,21, 4197.

    Article  Google Scholar 

  37. Rubinstein, M, Baram, A. and Luz, Z. (1971) Molec. Phys,20, 67.

    Article  Google Scholar 

  38. McBride, M.B, Pinnavaia, T.J. and Mortland, M.M. (1975) Am. Mineral.,60, 66.

    Google Scholar 

  39. Barry, T.I. and Lay, L.A. (1966) J. Phys. Chem. Solids,21, 1821.

    Article  Google Scholar 

  40. Barry, T.I. and Lay, L.A. (1968) J. Phys. Chem. Solids,29, 1395.

    Article  Google Scholar 

  41. Wichterlova, B, Kubelkova, L, Jiru, P. and Kolikova, D. (1980) Coll. Czech. Chem. Commun.,45, 2143.

    Google Scholar 

  42. McBride, M.B. (1979) Clays, Clay Miner.,21, 91.

    Article  Google Scholar 

  43. Harris, R.K., Knight, C.T.G. and Hull, W.E. (1981) J. Am. chem. Soc.,103, 1577.

    Article  Google Scholar 

  44. Griffen, R.G. (1977) Anal. Chem.,49, 951.

    Article  Google Scholar 

  45. Van Vleck, J.H. (1948) Phys. Rev.,14, 1168.

    Article  Google Scholar 

  46. Lowe, I.J. (1959) Phys. Rev. Lett.,2, 285.

    Article  Google Scholar 

  47. Andrew, E.R, Bradbury, A. and Eades, R.G. (1959) Nature, Lond.,183, 1802.

    Article  Google Scholar 

  48. Fyfe, C.A, Gobbi, G.C, Hartman, J.S. et al.(1982) J. magn. Reson.,41, 168.

    Google Scholar 

  49. Osteroff, E.D. and Waugh, J.S. (1966) Phys. Rev. Lett.,16, 1097.

    Article  Google Scholar 

  50. Waugh, J.S, Huber, L.M. and Haeberlen, U. (1968) Phys. Rev. Lett.,20, 180.

    Article  Google Scholar 

  51. Pines, A, Gibby, M. and Waugh, J.S. (1972) J. Chem. Phys.,56, 1776.

    Article  Google Scholar 

  52. Pines, A, Gibby, M. and Waugh, J.S. (1973) J. Chem. Phys.,59, 569.

    Article  Google Scholar 

  53. Hartmann, S.R. and Hahn, E.L. (1962) Phys. Rev.,128, 2042.

    Article  Google Scholar 

  54. Lippmaa, E.T, Alia, M.A, Pehk, T.J. and Engelhardt, G. (1978) J. Am. chem. Soc.,100, 1929.

    Article  Google Scholar 

  55. Lippmaa, E, Magi, M, Samoson, A. et al.(1981) J. Am. chem. Soc.,103, 4992.

    Article  Google Scholar 

  56. Stone, W.E.E. (1982) Devel. Sedimentol,34(Adv. Tech. Clay Miner. Anal), 77.

    Article  Google Scholar 

  57. Woessner, D.E. (1975) Mass Spectroscopy and NMR Spectroscopy in Pesticide Chemistry(eds R. Haque and F.J. Bines), Plenum Press, New York. p. 279.

    Google Scholar 

  58. Ananyan, A.A. (1978) Colloid J. U.S.S.R.,40, 1165.

    Google Scholar 

  59. Hougardy, J, Stone, W.E.E. and Fripiat, J.J. (1976) J. Chem. Phys.,64, 3840.

    Article  Google Scholar 

  60. Sanz, J. and Stone, W.E.E. (1977) J. Chem. Phys.,67, 3739.

    Article  Google Scholar 

  61. Gastuche, M.C, Toussaint, F, Fripiat, J.J. et al.(1963) Clay Mineral Bulletin,5, 227.

    Article  Google Scholar 

  62. Freude, D, Pribylov, A.A. and Schmiedel, H. (1973) Phys. Stat. Sol.(b),57, K73.

    Article  Google Scholar 

  63. Andrew, E.R. (1971) Progr. NMR Spectr.,8, 1.

    Article  Google Scholar 

  64. Yannoni, C.S. (1982) Acc. chem. Res.,15, 201.

    Article  Google Scholar 

  65. Lyerla, J.R, Yannoni, C.S. and Fyfe, C.A. (1982) Acc. chem. Res.,15, 208.

    Article  Google Scholar 

  66. Oldfield, E, Kinsey, R.A, Smith, K.A. et al(1983) J. magn. Reson,51, 325.

    Google Scholar 

  67. Basler, W.D. (1980) Z. Naturforsch. A,35, 645.

    Google Scholar 

  68. Rosenberger, V.H. and Grummer, A. -R. (1979) Z. Anorg. allgen. Chem.,448, 11.

    Article  Google Scholar 

  69. Marsmann, H. (1981) in NMR Basic Principles and Progress, Vol. 17 (eds P. Diehl, E. Fluck and R. Kosfeld), Springer-Verlag, Berlin, Heidelberg, New York, p. 65.

    Google Scholar 

  70. Smith, J.V. (1975) Feldspar Minerals, Springer-Verlag, Heidelberg.

    Google Scholar 

  71. Lippmaa, E, Magi, M, Samoson, A. et al.(1980) J. Am. chem. Soc.,102, 4889.

    Article  Google Scholar 

  72. Lowenstein, W. (1954) Am. Mineral,39, 92.

    Google Scholar 

  73. Pauling, L. (1929) J. Am. chem. Soc.,51, 1010.

    Article  Google Scholar 

  74. Ramdas, S, Thomas, J.M, Klinowski, J. et al(1981) Nature, Lond.,292, 228.

    Article  Google Scholar 

  75. Klinowski, J, Ramdas, S, Thomas, J.M. et al(1982) J. chem. Soc. (Faraday Trans. 2),78, 1025.

    Article  Google Scholar 

  76. Klinowski, J, Thomas, J.M, Fyfe, C.A. et al(1983) Inorg. Chem.,22, 63.

    Article  Google Scholar 

  77. Melchior, M.T, Vaughan, D.E.W. and Jacobson, A.J. (1982) J. Am. chem. Soc.,104, 4859.

    Article  Google Scholar 

  78. Engelhardt, V.G, Lohse, U, Lippmaa, E. et al(1981) Z. anorg. allgem. Chem.,482, 49.

    Article  Google Scholar 

  79. Bursill, L.A, Lodge, E.A, Thomas, J.M. and Cheetham, A.K. (1981) J. Phys. Chem.,85, 2409.

    Article  Google Scholar 

  80. Klinowski, J, Thomas, J.M, Fyfe, C.A. and Hartman, J.S. (1981) J. Phys. Chem.,85, 2590.

    Article  Google Scholar 

  81. Melchior, M.T, Vaughan, D.E.W, Jarman, R.H. and Jacobson, A.J. (1982) Nature, Lond.,298, 455.

    Article  Google Scholar 

  82. Adams, J.M. and Haselden, D.A. (1982) J. chem. Soc. Chem. Commun.,1982, 822.

    Article  Google Scholar 

  83. Cheetham, A.K, Fyfe, C.A, Smith, J.V. and Thomas, J.M. (1982) J. chem. Soc. Chem. Commun.,1982, 823.

    Article  Google Scholar 

  84. Klinowski, J, Thomas, J.M, Fyfe, C.A. et al(1983) Inorg. Chem.,22, 63.

    Article  Google Scholar 

  85. Schramm, S, Kirkpatrick, R.J. and Oldfield, E. (1983) J. Am chem. Soc.,105, 2483.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Chapman and Hall Ltd

About this chapter

Cite this chapter

McWhinnie, W.R. (1985). Electron Spin Resonance and Nuclear Magnetic Resonance Applied to Minerals. In: Berry, F.J., Vaughan, D.J. (eds) Chemical Bonding and Spectroscopy in Mineral Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4838-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4838-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8645-5

  • Online ISBN: 978-94-009-4838-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics