Skip to main content

Abstract

The chemical bond in minerals, as in chemical compounds, can be thought of as a sharing of a pair of electrons between two or more atoms. But for more detailed and quantitative understanding of bonding it is necessary to determine the energy with which the electrons are bound and their spatial distribution. This is very much the province of theoretical chemistry which, using the techniques of quantum mechanics or of wave mechanics, shows how the Schrödinger equation can be solved in varying degrees of approximation and to varying degrees of abstraction.1,2 The two most popular approaches are the molecular orbital (MO) theory and the valence bond theory. The former is the less sophisticated and generates wavefunctions (orbitals) for electrons that are delocalized over the network of nuclei under consideration (up to an indefinitely large number as in a metal). This theory calculates the energies of molecular orbitals (occupied and unoccupied) and their composition in terms of constituent atomic orbitals (AOs). But the delocalized nature of molecular orbitals destroys the simple concept of a pair of electrons forming a bond between two nuclei — which idea is at the heart of the valence bond method. Although these two approaches appear to give quite a different picture for electron distribution in a molecule they are in fact equivalent to each other and the set of occupied molecular orbitals can be transformed into the corresponding set of localized valence bond orbitals simply by taking suitable linear combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauling, L. and Wilson, E.B. (1935) Introduction to Quantum Mechanics, McGraw-Hill, New York and London.

    Google Scholar 

  2. Murrell, J.N,Kettle, S.F.A. and Tedder, J.M.( 1965 ) Valence Theory, John Wiley, London and New York.

    Google Scholar 

  3. Siegbahn, K., Nordling, N., Johansson, G. et al. (1969) ESCA Applied to Free Molecules, North-Holland, Amsterdam.

    Google Scholar 

  4. Baker, A.D.,Brundle, C. R. and Thompson, M. (1972) Chem. Soc. Rev.1, 355.

    Article  Google Scholar 

  5. Comptoo, A.H. and Allinson, S.K. (1935) X-rays in Theory and Experiment, Van Nostrand, New York.

    Google Scholar 

  6. Agarwal, B.K. (1979) X-ray Spectroscopy, Springer-Verlag, Heidelberg.

    Google Scholar 

  7. Urch, D.S. (1971) Quart. Rev.,25, 343.

    Article  Google Scholar 

  8. Price, W.C., Potts, A.W. and Streets, D.G. (1972) in Electron Spectroscopy(Proc. Int. Conference, Asilamar, 1971) ed. D.A. Shirley, North-Holland, Amsterdam, p. 187.

    Google Scholar 

  9. See for example, Eyring, H., Walter, J. and Kimball, G.E. (1944) Quantum Chemistry, Ch. 8, John Wiley, New York.

    Google Scholar 

  10. Urch, D.S. (1970) J. Phys. C, Solid State Phys.,3, 1275.

    Article  Google Scholar 

  11. Turner, D.W., Baker, C., Baker, A.D. and Brundle, C.R. (1970) Molecular Photoelectron Spectroscopy, Wiley-Interscience, London, New York.

    Google Scholar 

  12. Price, W.C. (1970) in Molecular Spectroscopy, The Institute of Petroleum, London.

    Google Scholar 

  13. Kim, K.S., Baitinger, W.E., Amy, J.W. and Winograd, N. (1974) J. Elect. Spectr. Rel. Phenom. 5, 247.

    Article  Google Scholar 

  14. Storp, S. and Holm, R. (1979) J. Elect. Spectr. Rel. Phenom.,16, 183.

    Article  Google Scholar 

  15. Kasrai, M. and Urch, D.S. (1979) J. chem. Soc. Faraday Trans. II,75, 1522.

    Article  Google Scholar 

  16. Brundle, C.R., Chuang, T.J. and Wandelt, K. (1977) Surf. Sci.,68, 459.

    Article  Google Scholar 

  17. Urch, M.J.S. and Urch, D.S. (1980) ESCA-Auger Tables (Al, Mg), Queen Mary College, Chemistry Department, London.

    Google Scholar 

  18. Birks, L. S. (1969) X-ray Spectrochemical Analysis, Wiley-Interscience, New York.

    Google Scholar 

  19. Jenkins, R. and de Vries, J.L. (1970) Practical X-ray Spectroscopy, MacMillan, London.

    Google Scholar 

  20. Haycock, D.E. and Urch, D.S. (1982) J. Phys. E. Sci. Instrum. 15, 40.

    Article  Google Scholar 

  21. Haycock, D.E. and Urch, D.S. (1978) X-ray Spectrometry,7, 206.

    Article  Google Scholar 

  22. Azaroff, L.V. (ed.) (1974) X-ray Spectroscopy, McGraw-Hill, New York.

    Google Scholar 

  23. Henke, B.L. (1962) Adv. X-ray Anal. 6, 361.

    Google Scholar 

  24. Henke, B.L. and Taniguchi, K. (1976) J. appl. Phys. 47, 1027.

    Article  Google Scholar 

  25. Wiech, G. (1966) Z. Phys. 193, 490.

    Article  Google Scholar 

  26. Barbee, T.W. (1981) in Low-Energy X-ray Diagnostics -1981, (eds. D.T. Attwood and B.L. Henke) American Institute of Physics, New York (AIP Conf. Prat. No. 75), p.133.

    Google Scholar 

  27. Urch, D.S. (1979) in Electron Spectroscopy: Theory Techniques and Applications(ed. C.R. Brundle and A.D. Baker) Vol. 3, Academic Press, London and New York, p. 1.

    Google Scholar 

  28. Day, D.E. (1963) Nature Lond.,200, 649.

    Article  Google Scholar 

  29. Tsutsumi, K. and Nakamori, H. (1968) J. phys. Soc. Japan,25, 1418.

    Article  Google Scholar 

  30. Slater, R.A. and Urch, D.S. (1972) J. chem. Soc. Chem. Comm., 564.

    Google Scholar 

  31. Wood, P.R. and Urch, D.S. (1978) X-ray Spectrometry,7, 9.

    Article  Google Scholar 

  32. Hogarth, U.C.L. and Urch, D.S. (1976) J. chem. Soc. Dalton, 794.

    Google Scholar 

  33. Esmail, E.I., Nicholls, C.J. and Urch, D.S. (1973) The Analyst,98, 725.

    Article  Google Scholar 

  34. Wiech, G., Zopf, E., Chun, H-U and Brukner, R. (1976) J. Non-Cryst. Solids,21, 251.

    Article  Google Scholar 

  35. Alter, A. and Wiech, G. (1978) Jap. J. appl. Phys.,17(supp. 2), 288.

    Google Scholar 

  36. Myers K. and Andermann G. (1972) J. chem. Soc. Chem. Comm., 934.

    Google Scholar 

  37. Nicholls C.J. and Urch D.S. (1975) J. chem. Soc. Dalton, 2143.

    Google Scholar 

  38. Haycock, DE. Nicholls CJ, Webber, MJ. et al. (1978) J. chem. Soc. Dalton, 1785.

    Google Scholar 

  39. Haycock, DE., Kasrai, M., Nicholls, CJ. and Urch, DS. (1978) J. chem. Soc. Dalton. 1791.

    Google Scholar 

  40. Soofield J.H. (1976) J. Elect. Spear. Rel. Phenonn.,8, l29.

    Article  Google Scholar 

  41. Tolon, C. and Urch, D.S. unpublished results.

    Google Scholar 

  42. Wiech, G. personal communication.

    Google Scholar 

  43. Brytov, I.A., Dikov, Yu. P., Romashchenko, Yu.N. et al(1976) Inv. Akad. Nauk SSR, Seriya fiz.,40, 413.

    Google Scholar 

  44. Al-Kadier, M.A.M.,Tolon, C. and Urch, D.S.(l904) J. Chem. Soc. Faraday Trans. II,80, 669

    Article  Google Scholar 

  45. Urch, D.S.(l979) Orbitals and Symmetry, 2nd printing, MacMillan, London.

    Google Scholar 

  46. Cotton, F.A. (1971) Chemical Applications of Group Theory, 2nd edn, Wiley-Interscience, New York.

    Google Scholar 

  47. Wiech, G. (1967) Z. Physik,207, 428.

    Article  Google Scholar 

  48. Klein, G.(1973) Proc. Int. Symp. X-ray Spectra and Electronic Structure of Matter, Munich 1972 (ed. A. Faemsleruod G. Wiech)Vol. 2, p. 362.

    Google Scholar 

  49. Tolmo, C. and Drcb, D.S. unpublished results.

    Google Scholar 

  50. Wiech, G., Koppen, W. and Urch, D.S. (1972) Inorg. Chim. Acta,6, 376.

    Article  Google Scholar 

  51. Berg, U., Drager, G., Mosebach. K., and Brummer, O. (1976) Phys. Stat. Sol.,B75, K89.

    Google Scholar 

  52. Tossell, J.A. (1977) J. Chem. Phys.,66, 5712.

    Article  Google Scholar 

  53. Wiech, G. (l981)in Inner-Shell and X-ray Physics of Atoms and Solids (ed. D.J. Fabian, H. Kleinpoppen and L.M.Watson), Plenum Press New York, p.815.

    Google Scholar 

  54. Beyreuther, C., Hierl, R. and Wiech, G. (1975) Ber. Buns. Phys. Chem.,79, 1082.

    Google Scholar 

  55. Tegeler, E., Kosuch, N., Wiech, G. and Faessler, A. (1980) J. Elect. Spectr. Rel. Phenom. 18, 23.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Chapman and Hall Ltd

About this chapter

Cite this chapter

Urch, D.S. (1985). X-ray Spectroscopy and Chemical Bonding in Minerals. In: Berry, F.J., Vaughan, D.J. (eds) Chemical Bonding and Spectroscopy in Mineral Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4838-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4838-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8645-5

  • Online ISBN: 978-94-009-4838-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics