Skip to main content

Benthic Microbial Communities of Australian Saline Lakes

  • Chapter
Limnology in Australia

Part of the book series: Monographiae Biologicae ((MOBI,volume 61))

Abstract

Cohesive benthic microbial communities (BMC) are common in Australian salt lakes. They are dominated by photosynthetic prokaryotes and, less frequently, eukaryotic microalgae. Structural integrity is derived primarily from filamentous prokaryotes or stalked diatoms. The organic matter produced by in situ (or external) photosynthetic CO2 fixation is then decomposed by a series of microbial processes culminating in sulfate reduction and methanogenesis, from which the final carbon degradation products are CO2 and CH4. Degradative processes are most active just below the photic zone but are also interspersed throughout it. BMC are characteristically laminated, reflecting the spatial organization of the various physiological groups present and their interaction with each other and with the physicochemical environment. The totality is a dynamic equilibrium exhibiting steep gradients and striking diurnal fluctuations. Community members must adopt suitable metabolic and behavioural strategies to deal with these and other, less regular, fluctuations in parameters such as salinity and desiccation. Still unresolved are questions concerning the following topics: the quantitative importance of BMC primary production in relation to that of phytoplankton and aquatic macrophytes, the environmental factors promoting formation of BMC and their ability to compete with other primary producers, the quantitative significance of anoxygenic photoautotrophy in BMC, the effect of meiofauna on internal elemental cycling and exchange with the overlying water, and the significance of photoheterotrophy at high salinities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barsdate, R.J., Prentki, R.T., and Fenchel, T. (1974). Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers. Oikos 25, 239–51.

    Article  CAS  Google Scholar 

  • Bast, E. (1977). Utilization of nitrogen compounds and ammonia assimilation by Chromatiaceae. Arch. Microbiol. 113, 91–4.

    Article  PubMed  CAS  Google Scholar 

  • Bauld, J. (1981a). Occurrence of benthic microbial mats in saline lakes. Hydrobiologia 81, 87–111.

    Article  Google Scholar 

  • Bauld, J. (1981b). Geobiological role of cyanobacterial mats in sedimentary environments: production and preservation of organic matter. BMR J. Aust. Geol. Geophys. 6, 307–17.

    CAS  Google Scholar 

  • Bauld, J. (1984a). Microbial mats in marginal marine environments: Shark Bay, Western Australia and Spencer Gulf, South Australia. In ‘Microbial Mats: Stromatolites’. (Eds Y. Cohen, R. W. Castenholz and H. O. Halvorson.) pp. 39–58. ( Alan R. Liss: New York. )

    Google Scholar 

  • Bauld, J. (1984b). Role of photoheterotrophic bacteria in carbon and sulfur cycling in benthic microbial communities. Discussion paper, SCOPE-UNEP Workshop ‘Global Sulfur Cycle’, Tallinn.

    Google Scholar 

  • Bauld, J., and Brock, T.D. (1973). Ecological studies of Chloroflexus, a gliding photosynthetic bacterium. Arch. Mikrobiol. 92, 267–84.

    Article  Google Scholar 

  • Bauld, J., and Brock, T.D. (1974). Algal excretion and bacterial assimilation in hot spring algal mats. J. Phycol. 10, 101–6.

    Google Scholar 

  • Biebl, H., and Pfennig, N. (1979). Anaerobic C02 uptake by phototrophic bacteria. A review. Ergebn. Limnol.12, 48–58.

    Google Scholar 

  • Brock, M.A., and Lane, J.A.K. (1983). The aquatic macrophyte flora of saline wetlands in Western Australia in relation to salinity and permanence. Hydrobiologia 105, 63–76.

    Article  Google Scholar 

  • Brock, M.A., and Shiel, R.J. (1983). The composition of aquatic communities in saline wetlands in Western Australia. Hydrobiologia 105, 77–84.

    Article  Google Scholar 

  • Brown, A.D. (1976). Microbial water stress. Bacteriol. Rev. 40, 803–46.

    PubMed  CAS  Google Scholar 

  • Bubela, B. (1980). Some aspects of the interstitial water movements in simulated sedimentary systems. BMR J. Aust. Geol. Geophys. 5, 257–63.

    Google Scholar 

  • Bunn, S.E., and Edward, D.H.D. (1984). Seasonal meromixis in three hypersaline lakes on Rottnest Island, Western Australia. Aust. J. Mar. Freshw. Res. 35, 261–5.

    Article  Google Scholar 

  • Burne, R.V., Bauld, J., and De Deckker, P. (1980). Saline lake charophytes and their geological significance. J. Sediment. Petrol. 50, 281–93.

    CAS  Google Scholar 

  • Burne, R.V., and Ferguson, J. (1983). Contrasting marginal sediments of a seasonally flooded saline lake—Lake Eliza, South Australia: significance for oil shale genesis. BMR J. Aust. Geol. Geophys. 8, 99–108.

    Google Scholar 

  • Castenholz, R.W. (1984). Composition of hot spring microbial mats: a summary. In ‘Microbial Mats: Stromatolites’. (Eds Y. Cohen, R. W. Castenholz and H. O. Halvorson.) pp. 101–19. ( Alan R. Liss: New York. )

    Google Scholar 

  • Cohen, Y. (1984). Oxygenic photosynthesis, anoxygenic photosynthesis, and sulfate reduction in cyanobacterial mats. In ‘Current Perspectives in Microbial Ecology’. (Eds M.J. Klug and C.A. Reddy.) pp. 435–41. (American Society for Microbiology: Washington.)

    Google Scholar 

  • Cohen, Y., Krumbein, W. E., and Shilo, M. (1977). Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22, 609–20.

    Article  CAS  Google Scholar 

  • Croome, R. L. (1986). Biological studies of meromictic lakes. In ‘Limnology in Australia’. (Eds P. De Deckker and W. D. Williams.) pp. 113–30. (CSIRO: Melbourne, and Dr W. Junk: Dordrecht.)

    Google Scholar 

  • De Deckker, P., Bauld, J., and Burne, R. V. (1982). Pillie Lake, Eyre Peninsula, South Australia: modern environment and biota, dolomite sedimentation, and Holocene history. Trans. R. Soc. S. Aust. 106, 169–81.

    Google Scholar 

  • Dravis, J.J. (1982). Hardened subtidal stromatolites, Bahamas. Science (Wash. D.C.) 219, 385–6.

    Article  Google Scholar 

  • Edward, D.H.D. (1983). Inland waters of Rottnest Island. J. R. Soc. West. Aust. 66, 41–7.

    CAS  Google Scholar 

  • Espie, G. S., Gehl, K. A., Owttrim, G. W., and Colman, B. (1984). Inorganic carbon utilization by cyanobacteria. In ‘Advances in Photosynthetic Research’. (Ed. C. Sybesma.) Vol. 3, pp. 457–60. ( Martinus Nijhoff/Junk: The Hague. )

    Google Scholar 

  • Fattom, A., and Shilo, M. (1984). Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl. Environ. Microbiol. 47, 135–43.

    PubMed  CAS  Google Scholar 

  • Garrett, P. (1970). Phanerozoic stromatolites: non-competitive ecologic restriction by grazing and burrowing animals. Science (Wash. D.C.) 169, 171–3.

    Article  CAS  Google Scholar 

  • Giani, D., Giani, L., Cohen, Y., and Krumbein, W. E. (1984). Methanogenesis in the hypersaline Solar Lake (Sinai) FEMS Microbiol. Lett. 25, 219–24.

    Article  CAS  Google Scholar 

  • Hammer, U. T. (1981). Primary production in saline lakes. Hydrobiologia 81, 47–57.

    Article  Google Scholar 

  • Hammer, U. T. (1985). Aquatic macrophytes in saline lakes of the Canadian prairies. Abstracts, 3rd International Symposium on Inland Saline Lakes, p. 9. (International Association of Theoretical and Applied Limnology.)

    Google Scholar 

  • Healey, F. P. (1982). Phosphate. In ‘The Biology of Cyanobacteria’. (Eds N. G. Carr and B. A. Whitton.) pp. 105–24. ( Blackwell Scientific Publications: Oxford. )

    Google Scholar 

  • Jannasch, H. W., and Wirsen, C. O. (1981). Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol. 41, 528–38.

    PubMed  CAS  Google Scholar 

  • Javor, B. (Discussion leader) (1984). Community structure and primary production of microbial mats—discussion. In ‘Microbial Mats: Stromatolites’. (Eds Y. Cohen, R. W. Castenholz and H. O. Halvorson.) pp. 189–90. ( Alan R. Liss: New York. )

    Google Scholar 

  • Jørgensen, B. B. (1982). Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 298, 531–61.

    Google Scholar 

  • Jørgensen, B. B. (1983). The microbial sulfur cycle. In ‘Microbial Geochemistry’. (Ed. W. E. Krumbein.) pp. 91–124. (Blackwell Scientific Publications: Oxford.)

    Google Scholar 

  • Jørgensen, B. B., Revsbech, N. P., Blackburn, T. H., and Cohen, Y. (1979). Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial sediment. Appl. Environ. Microbiol. 38, 46–58.

    PubMed  Google Scholar 

  • Krumbein, W. E., and Cohen, Y. (1977). Primary production, mat formation and lithification: contribution of oxygenic and facultative anoxygenic cyanobacteria. In ‘Fossil Algae: Recent Results and Developments’. (Ed. E. Flugel.) pp. 37–56. (Springer-Verlag: New York.)

    Google Scholar 

  • Krumbein, W. E., Cohen, Y., and Shilo, M. (1977). Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnol. Oceanogr. 22, 635–56.

    Article  CAS  Google Scholar 

  • Kuenen, J. G., Robertson, L. A., and Van Gemerden, H. (1985). Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria. Adv. Microb. Ecol. 8, 1–59.

    CAS  Google Scholar 

  • Lyons, W. B., Hines, M. E., and Gaudette, H. E. (1984). Major and minor element pore water geochemistry of modern marine sabkhas: the influence of cyanobacterial mats. In ‘Microbial Mats: Stromatolites’. (Eds Y. Cohen, R. W. Castenholz and H. O. Halvorson.) pp. 411–23. ( Alan R. Liss: New York. )

    Google Scholar 

  • Marshall, K. C. (1976). ‘Interfaces in Microbial Ecology.’ ( Harvard University Press: Cambridge. )

    Google Scholar 

  • Melack, J. M. (1981). Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81, 71–85.

    Article  Google Scholar 

  • Moore, L. S., Knott, B., and Stanley, N. F. (1983). The stromatolites of Lake Clifton, Western Australia. Search (Syd.) 14, 309–14.

    Google Scholar 

  • Padan, E. (1979). Impact of facultatively anaerobic photoautotrophic metabolism on ecology of cyanobacteria. Adv. Microb. Ecol. 3, 1–48.

    CAS  Google Scholar 

  • Pfennig, N. (1967). Photosynthetic bacteria. Annu. Rev. Microbiol. 21, 285–324.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N., and Trüper, H. G. (1974). The phototrophic bacteria. In ‘Bergey’s Manual of Determinative Bacteriology’. (Eds R. E. Buchanan and N. E. Gibbons.) pp. 24–64. (Williams and Wilkins: Baltimore.)

    Google Scholar 

  • Pierson, B. K., Giovannoni, S. J., and Castenholz, R. W. (1984). Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Appl. Environ. Microbiol. 47, 576–84.

    PubMed  CAS  Google Scholar 

  • Reeburgh, W. S. (1983). Rates of biogeochemical processes in anoxic sediments. Annu. Rev. Earth Planet. Sci. 11, 269–98.

    Article  CAS  Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H., and Cohen, Y. (1983). Microelectrode studies of photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol. Oceanogr. 28, 1062–74.

    Article  Google Scholar 

  • Rodriguez-Valera, F., Ventosa, A., Juez, G., and Imhoff, J. F. (1985). Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb. Ecol. 11, 107–15.

    Article  CAS  Google Scholar 

  • Scherer, S., and Boger, P. (1982). Respiration of blue-green algae in the light. Arch. Microbiol. 132, 329–32.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Matzigkeit, U., and Krumbein, W. E. (1984). Superheavy organic carbon from hypersaline microbial mats. Assimilatory pathway and geochemical implications. Naturwissenschaften 71, 303–8.

    Google Scholar 

  • Schönheit, P., Kristjansson, J. K., and Thauer, R. K. (1982). Kinetic mechanism for the ability of sulfate-reducers to out-compete methanogens for acetate. Arch. Microbiol. 132, 285–8.

    Article  Google Scholar 

  • Schubert, W., Giani, D., Rongen, P., Krumbein, W. E., and Schmidt, W. (1980). Photoacoustic in-vivo spectra of recent stromatolites. Naturwissenschaften 67, 129–32.

    Article  Google Scholar 

  • Skyring, G. W., Chambers, L. A., and Bauld, J. (1983). Sulfate reduction in sediments colonized by cyanobacteria, Spencer Gulf, South Australia. Aust. J. Mar. Freshw. Res. 34, 359–74.

    Article  CAS  Google Scholar 

  • Smith, F. A., and Walker, N. A. (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotope discrimination. New Phytol. 86, 245–59.

    Article  CAS  Google Scholar 

  • Stal, L. J., Grossberger, S., and Krumbein, W. E. (1984). Nitrogen fixation associated with the cyanobacterial mat of a marine laminated microbial ecosystem. Mar. Biol. (Berl.) 82, 217–24.

    Article  CAS  Google Scholar 

  • Timms, B. V. (1983). A study of benthic communities in some shallow saline lakes of western Victoria, Australia. Hydrobiologia 105, 165–77.

    Article  Google Scholar 

  • Walter, M. R. (1983). Archean stromatolites: evidence of the Earth’s earliest benthos. In ‘Earth’s Earliest Biosphere’. (Ed. J. W. Schopf.) pp. 187–213. (Princeton University Press: Princeton.)

    Google Scholar 

  • Ward, D. M., Beck, E., Revsbech, N. P., Sandbeck, K. A., and Winfrey, M. R. (1984). Decomposition of hot springs algal mats. In ‘Microbial Mats: Stromatolites’. (Eds Y. Cohen, R. W. Castenholz and H. O. Halvorson.) pp. 191–214. ( Alan R. Liss: New York. )

    Google Scholar 

  • Wetzel, R. G. (1964). A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large, shallow lake. Int. Rev. Gesamten Hydrobiol. 49, 1–61.

    Article  Google Scholar 

  • Williams, L. A., and Reimers, C. E. (1983). The role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: a preliminary report. Geology (Boulder) 11, 267–9.

    Article  Google Scholar 

  • Wright, S. W., and Burton, H. R. (1981). The biology of Antarctic saline lakes. Hydrobiologia 82, 319–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 CSIRO — Australia

About this chapter

Cite this chapter

Bauld, J. (1986). Benthic Microbial Communities of Australian Saline Lakes. In: De Deckker, P., Williams, W.D. (eds) Limnology in Australia. Monographiae Biologicae, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4820-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4820-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8636-3

  • Online ISBN: 978-94-009-4820-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics