Skip to main content

Differential Mixed-layer Deepening in Lakes and Reservoirs

  • Chapter

Part of the book series: Monographiae Biologicae ((MOBI,volume 61))

Abstract

Detailed meteorological measurements are used, together with fine-scale measurements of the density structure in a reservoir, to show that differential deepening of the diurnal mixed layer may occur as a result of a horizontal spatial variability in the wind stress. In the study, a one-dimensional integral model is used to simulate the energetics of mixed-layer deepening. A simple algorithm to simulate temperature changes due to horizontal advection is incorporated into the model. The model simulation shows that, during the study period, shear production was the major source of turbulent kinetic energy for deepening, but the wind duration was sufficiently short so that the mixed-layer depth closely reflected the local wind stress, even though the Wedderburn number was near unity. The horizontal density gradients set up by the increased deepening in the exposed region of the reservoir resulted in a horizontal flow driven by gravity, with typical overflow velocities of approximately 0·02 m s-1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amen, R., and Maxworthy, T. (1980). The gravitational collapse of a mixed region into a linearly stratified fluid. J. Fluid Mech. 96, 65–80.

    Article  Google Scholar 

  • Britter, R. E., and Simpson, J. E. (1981). A note on the structure of the head of an intrusive gravity current. J. Fluid Mech. 112, 459–66.

    Article  Google Scholar 

  • Caldwell, D. R., and Dillon, T. M. (1981). An oceanic microstructure measuring system. School of Oceanography, Oregon State University Reference 81–10.

    Google Scholar 

  • Chips Brothers (1983). A low cost logger for recording borehole level or rainfall and windspeed. University of Western Australia, Environmental Dynamics Rep. No. ED-83-057.

    Google Scholar 

  • Dillon, T. M. (1982). The mixing length of vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Geophys. Res. 87, 9601–13.

    Article  Google Scholar 

  • Faust, K. M. (1981). Intrusion of a density front in a stratified environment. In ‘Aspects of Stratified Flow in Man-made Reservoirs’. (Eds J. A. Denton, K. M. Faust and E.J. Plate.) Sonderforschungsbereich 80, University Karlsruhe, Rep. No. SFB-80/ET/203. Pt III, pp. 1–53.

    Google Scholar 

  • Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., and Brooks, N. H. (1979). ‘Mixing in Inland and Coastal Waters.’ (Academic Press: New York.)

    Google Scholar 

  • Fozdar, F. M., Parker, G. J., and Imberger, J. (1985). Matching temperature and conductivity sensor response characteristics. J. Phys. Oceanogr. 10, 1557–69.

    Article  Google Scholar 

  • Gibson, C. H. (1982). Alternative interpretations for microstructure patches in the thermocline. J. Phys. Oceanogr. 12, 374–83.

    Article  Google Scholar 

  • Gregg, M. C., and Briscoe, M. G. (1979). Internal waves, finestructure, microstructure, and mixing in the ocean. Rev. Geophys. Space Phys. 17, 1524–48.

    Article  Google Scholar 

  • Hicks, B. B. (1975). A procedure for the formulation of bulk transfer coefficients over water. Boundary-Layer Meteorol. 8, 515–24.

    Article  Google Scholar 

  • Holyer, J. Y., and Huppert, H. E. (1980). Gravity currents entering a two-layer fluid. J. Fluid Mech. 100, 739–67.

    Article  Google Scholar 

  • Imberger, J. (1985a). Thermal characteristics of standing waters: an illustration of dynamical processes. Hydrobiologia 125, 7–29.

    Article  Google Scholar 

  • Imberger, J. (1985b). The diurnal mixed layer. Limnol. Oceanogr. 30, 737–70.

    Google Scholar 

  • Imberger, J., and Chapman, R. (1985). Djinnang II: a facility to study mixing in stratified waters. In ‘Hydrodynamics of Estuaries’. (Ed. B. J. Kjerve.) (CRC Press: Palm Beach.) (In press.)

    Google Scholar 

  • Imberger, J., and Hamblin, P. F. (1982). Dynamics of lakes, reservoirs, and cooling ponds. Annu. Rev. Fluid Mech. 14, 153–87.

    Article  Google Scholar 

  • Imberger, J., and Parker, G. J. (1985). Mixed layer dynamics in a lake exposed to a spatially variable wind speed. Limnol. Oceanogr. 30, 473–88.

    Article  Google Scholar 

  • Imberger, J., Thompson, R., and Fandry, C. (1976). Selective withdrawal from a finite rectangular tank. J. Fluid Mech. 78, 489–512.

    Article  Google Scholar 

  • Kao, T. W. (1977). Density currents and their applications. J. Hydr. Dw. ASCE. 103, 543–55.

    Google Scholar 

  • Kraus, E. B., and Turner, J. S. (1967). A one-dimensional model of the seasonal thermocline. Tellus 19, 98–106.

    Article  Google Scholar 

  • Manins, P. C. (1976). Mixed region collapse in a stratified fluid. J. Fluid Mech. 77, 177–83.

    Article  Google Scholar 

  • Maxworthy, T. (1980). On the formation of non-linear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J. Fluid. Mech. 96, 47–64.

    Article  Google Scholar 

  • Maxworthy, T., and Monismith, S. (1985). Differential deepening of a mixed layer in a stratified fluid. Proceedings of the 21st Congress, International Association for Hydraulic Research, Melbourne, August 1985. Vol. 2, pp. 192–8.

    Google Scholar 

  • Pollard, R. T., Rhines, P. B., and Thompson, R. O. R. Y. (1973). The deepening of the wind-mixed layer. Geophys. Fluid Dyn. 3, 381–404.

    Google Scholar 

  • Spigel, R. H., and Imberger, J. (1980). The classification of mixed-layer dynamics in lakes of small to medium size. J. Phys. Oceanogr. 10, 1104–21.

    Article  Google Scholar 

  • Spigel, R. H., Imberger, J., and Rayner, K. N. (1985). Modelling the diurnal mixed layer. Limnol. Oceanogr. (In press.)

    Google Scholar 

  • Stillinger, D. C., Helland, K. N., and Van Atta, C. W. (1983). Experiments on the transition of homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech. 131, 91–122.

    Article  Google Scholar 

  • Tennekes, H., and Lumley, J. L. (1972). ‘A First Course in Turbulence.’ (MIT Press: Cambridge.)

    Google Scholar 

  • Thorpe, S. A. (1973). Turbulence in stratified fluids: a review of laboratory experiments. Boundary-Layer Meteorol. 5, 95–119.

    Article  Google Scholar 

  • Thorpe, S. A. (1977). Turbulence and mixing in a Scottish Loch. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 286, 125–81.

    Article  Google Scholar 

  • Weinstock, J. (1978). Vertical turbulent diffusion in a stably stratified fluid. J. Atmos. Sci. 35, 1022–7.

    Article  Google Scholar 

  • Weinstock, J. (1981). Vertical turbulence diffusivity for weak or strong stable stratification. J. Geophys. Res. 86, 9925–8.

    Article  Google Scholar 

  • Wu, J. (1969). Mixed region collapse with internal wave generation in a density stratified medium. J. Fluid Mech. 56, 265–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 CSIRO — Australia

About this chapter

Cite this chapter

Parker, G.J., Imberger, J. (1986). Differential Mixed-layer Deepening in Lakes and Reservoirs. In: De Deckker, P., Williams, W.D. (eds) Limnology in Australia. Monographiae Biologicae, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4820-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4820-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8636-3

  • Online ISBN: 978-94-009-4820-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics