Seasonality of phytoplankton in northern tundra ponds

  • Robert G. Sheath
Part of the Developments in Hydrobiology book series (DIHY, volume 33)


Thermokarst ponds are the most abundant type of water body in the arctic tundra, with millions occurring in the coastal plains of Alaska, Northwest Territories and Siberia. Because ice covers of at least 2 m in thickness are formed at these latitudes, tundra ponds freeze solid every winter As a result, the growing season is shortened to a range of 60 to 100 days, during which time the photoperiod is altered to a prolonged light phase. Tundra ponds are generally close to neutral in pH and low in ions, contain dissolved gases near saturation and are nutrient poor. In low arctic ponds there are two phytoplankton biomass and primary production peaks, whereas they may be only one in the high arctic. Nanoplanktonic flagellates of the Chrysophyceae and Cryptophyceae dominate the maxima. The mid-summer decline in phytoplankton in the low arctic can be attributed to a combination of phosphorus limitation and heavy grazing pressure. The cryptomonad Rhodomonas minuta Skuja is one of the most widespread phytoplankters in tundra ponds. Because of the altered photoperiods, many species do not form resting spores prior to ice formation but survive freezing in the vegetative state.


seasonality tundra pond phytoplankton algae arctic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, V., D. W. Stanley, R. J. Daley & C. P. McRoy, 1980. Primary producers. In J. E. Hobbie (ed.), Limnology of tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross. Stroudsburg, Penn.: 179 – 250.Google Scholar
  2. Britton, M. E., 1957. Vegetation of the arctic tundra. In H. P. Hansen (ed.), Arctic biology. Oregon State Press, Corvallis, Oregon: 26 – 61.Google Scholar
  3. Brown, J., P. C. Miller, L. L. Tieszen & F. L. Bunnell (eds), 1980. An arctic ecosystem. The coastal tundra at Barrow, Alaska. U.S./I.B.P. Synth. Ser. 12. Dowden, Hutchinson & Ross, Stroudsburg, Penn.: 571 pp.Google Scholar
  4. Carson, C. E. & K. M. Hussey, 1960. Hydrodynamics of three arctic lakes. J. Geol. 68: 585 – 600.CrossRefGoogle Scholar
  5. Dodson, S. I., 1979. Body size patterns in arctic and temperate zooplankton. Limnol. Oceanogr. 24: 940 – 949.CrossRefGoogle Scholar
  6. Douglas, L. A. & A. Bilgin, 1975. Nutrient regimes of soils, landscapes, lakes, and streams, Prudhoe Bay, Alaska. In J. Brown (ed.), Ecological Investigations of the Tundra Biome in the Prudhoe Bay region, Alaska. Univ. Alaska spec. Rep. 2, Fairbanks: 61 – 70.Google Scholar
  7. Hobbie, J. E., 1973. Arctic limnology: A review. In M. E. Britton (ed.), Alaska arctic tundra. Arc. Inst. N. Am. tech. Pap. 25: 127 – 168.Google Scholar
  8. Hobbie, J. E., 1980. Major findings. In J. E. Hobbie (ed.), Limnology of tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross, Stroudsburg, Penn.: 1 – 18.Google Scholar
  9. Holmgren, S., 1968. Phytoplankton production in a lake north of the Arctic Circle. Fil. Lie. Thesis, Univ. Uppsala, 145 pp.Google Scholar
  10. Hutchinson, G. E., 1957. A treatise on limnology. Vol. 1 Geography, physics, and chemistry. Wiley-Interscience, N.Y., 1015 pp.Google Scholar
  11. Kalff, J., 1967. Phytoplankton abundance and primary production rates in two arctic ponds. Ecology 48: 558 – 565.CrossRefGoogle Scholar
  12. Kalff, J., 1969. A diel periodicity in the optimum light intensity for maximum photosynthesis in natural phytoplankton populations. J. Fish. Res. Bd Can. 26: 463 – 468.CrossRefGoogle Scholar
  13. Kalff, J., 1971. Nutrient limiting factors in an arctic tundra pond. Ecology 52: 655 – 659.CrossRefGoogle Scholar
  14. Legett, R. F., H. B. Dickens & R. J. E. Brown, 1961. Permafrost investigations in Canada. In G. O. Raasch (ed.), Geology in the arctic. University of Toronto Press, Toronto, Ont.: 956 – 969.Google Scholar
  15. Levitt, J., 1980. Response of plants to environmental stresses. Vol. 1. Chilling, freezing, and high temperature stresses. Academic Press, N.Y., 497 pp.Google Scholar
  16. Livingstone, D. A., 1963. Alaska, Yukon, Northwest Territories, and Greenland. In D. G. Frey (ed.), Limnology in North America. University of Wisconsin Press, Madison: 559 – 574.Google Scholar
  17. Lowe, C. W., 1923. Report of the Canadian arctic expedition 1913–1918, 4. Botany, A. Freshwater algae and freshwater diatoms. King’s Printer, Ottawa, Ontario, 53 pp.Google Scholar
  18. MacKay, J. R., 1963. The Mackenzie Delta area, N. W. T. Geographical Branch Memoir 8, Ottawa, 202 pp.Google Scholar
  19. McCoy, G. A., 1983. Nutrient limitation in two arctic lakes, Alaska. Can. J. Fish, aquat. Sci. 40: 1195 – 1202.CrossRefGoogle Scholar
  20. Miller, M. C., R. T. Prentki & R. J. Barsdate, 1980. Physics. In J. E. Hobbie (ed.). Limnology of tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross, Stroudsburg, Penn.: 51 – 75.Google Scholar
  21. Moore, J. W., 1974. Benthic algae of Southern Baffin Island. II. The epipelic communities in temporary ponds. J. Ecol. 62: 809 – 819.CrossRefGoogle Scholar
  22. Moore, J. W., 1978. Distribution and abundance of phytoplankton in 153 lakes, rivers, and pools in the Northwest Territories. Can. J. Bot. 56: 1765 – 1773.CrossRefGoogle Scholar
  23. Moore, J. W., 1981. Patterns of distribution of phytoplankton in Northern Canada. Nova Hedwigia 34: 599 – 621.Google Scholar
  24. Ohmura, A., 1982. Evaporation from the surface of the arctic tundra on Axel Heiburg Island. Wat. Resour. Res. 18: 291 – 300.CrossRefGoogle Scholar
  25. Prentki, R. T., M. C. Miller, R. J. Barsdate, V. Alexander, J. Kelley & P. Coyne, 1980. Chemistry. In J. E. Hobbe (ed.), Limnology on tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross, Stroudsburg, Penn.: 76 – 178.Google Scholar
  26. Prescott, G. W., 1963. Ecology of Alaskan freshwater algae, 2. Introduction: general considerations. Trans, am. microsc. Soc. 82: 83 – 142.CrossRefGoogle Scholar
  27. Pruitt, W. O., Jr., 1978. Boreal ecology. Studies in Biology 91. Arnold, Lond., 73 pp.Google Scholar
  28. Rawson, D. S., 1953. Limnology in the North American arctic and subarctic. Arctic 6: 198 – 204.Google Scholar
  29. Rodin, L. E., N. I. Bazilevich & N.N. Rozov, 1975. Productivity of the world’s main ecosystems. In: Productivity of world ecosystems. Proc. Symp., Aug. 31-Sept. 1, 1972, Seattle, Wash. Natn. Acad. Sci., Wash.: 13 – 26.Google Scholar
  30. Sheath, R. G., M. Munawar & J. A. Hellebust, 1975. Phyto- plankton biomass composition and primary productivity during the ice-free period in a tundra pond. In Proc. Circumpolar Conf. arct. Ecol., Natn. Res. Counc., Ottawa, 3: 21 – 31.Google Scholar
  31. Sheath, R. G. & J. A. Hellebust, 1978. Comparison of algae in the euplankton, tychoplankton, and periphyton of a tundra pond. Can. J. Bot. 56: 1472 – 1483.CrossRefGoogle Scholar
  32. Sheath, R. G., M. Havas, J. A. Hellebust & T. C. Hutchinson, 1982. Effects of long-term natural acidification on the algal communities of tundra ponds at the Smoking Hills, N. W. T., Canada. Can. J. Bot. 60: 58 – 72.CrossRefGoogle Scholar
  33. Sheath, R. G. & A. D. Steinman, 1982. A checklist of freshwater algae of the Northwest Territories, Canada. Can. J. Bot. 60: 1964 – 1997.CrossRefGoogle Scholar
  34. Stanley, D. W., 1976. Productivity of epipelic algae in tundra ponds and a lake near Barrow, Alaska. Ecology 57: 1015 – 1024.CrossRefGoogle Scholar
  35. Stanley, D. W. & R. J. Daley, 1976. Environmental control of primary productivity in Alaskan tundra ponds. Ecology 57: 1024 – 1033.Google Scholar
  36. Steponkus, P. L., 1984. Role of the plasma membrane in freezing injury and cold acclimation. Ann. Rev. PL Physiol. 35: 543 – 584.CrossRefGoogle Scholar
  37. Stross, R. G., M. C. Miller & R. J. Daley, 1980. Zooplankton. In J. E. Hobbie (ed.), Limnology of tundra ponds, Barrow, Alaska. U.S./I.B.P. Synth. Ser. 13. Dowden, Hutchinson & Ross, Stroudsburg, Penn.: 251 – 296.Google Scholar
  38. Yamagishi, T., 1967. Some filamentous Chlorophyceae in the Alaskan arctic. Bull. Natn. Sci. Mus., Tokyo 10: 201 – 206.Google Scholar
  39. Yamagishi, T., 1969. Unicellular and colonial Chlorophyceae in the Alaskan arctic. Gen. Educ. Rev. Coll. Agr. Vet. Med., Nihon Univ. 5: 18 – 29.Google Scholar
  40. Yamagishi, T., 1970. A check-list of the Euglenophyceae and Chrysophyceae in the Alaskan arctic. Gen. Educ. Rev. Coll. Agr. Vet. Med., Nihon Univ. 6: 11 – 22.Google Scholar
  41. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus & G. N. Somero, 1982. Living with water stress: Evolution of osmolyte systems. Science 217: 1214 – 2222.PubMedCrossRefGoogle Scholar
  42. Wetzel, R. G., 1983. Limnology, 2nd Edn. Saunders College Publishing, Philadelphia, Penn., 753 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers, Dordrecht 1986

Authors and Affiliations

  • Robert G. Sheath
    • 1
  1. 1.Department of BotanyUniversity of Rhode IslandKingstonUSA

Personalised recommendations