Advertisement

The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe

  • Ulrich Sommer
Part of the Developments in Hydrobiology book series (DIHY, volume 33)

Abstract

Phytoplankton periodicity has been fairly regular during the years 1979 to 1982 in Lake Constance. Algal mass growth starts with the vernal onset of stratification; Cryptophyceae and small centric diatoms are the dominant algae of the spring bloom. In June grazing by zooplankton leads to a ‘clear-water phase’ dominated by Cryptophyceae. Algal summer growth starts under nutrient-saturated conditions with a dominance of Cryptomonas spp. and Pandorina morum. Depletion of soluble reactive phosphorus is followed by a dominance of pennate and filamentous centric diatoms, which are replaced by Ceratium hirundinella when dissolved silicate becomes depleted. Under calm conditions there is a diverse late-summer plankton dominated by Cyanophyceae and Dinobryon spp.; more turbulent conditions and silicon resupply enable a second summer diatom growth phase in August. The autumnal development leads from a Mougeotia — desmid assemblage to a diatom plankton in late autumn and winter.

Inter-lake comparison of algal seasonality includes in ascending order of P-richness Königsee, Attersee, Walensee, Lake Lucerne, Lago Maggiore, Ammersee, Lake Zürich, Lake Geneva, Lake Constance. The oligotrophic lakes have one or two annual maxima of biomass; after the vernal maximum there is a slowly developing summer depression and sometimes a second maximum in autumn. The more eutrophic lakes have an additional maximum in summer. The number of floristically determined successional stages increases with increasing eutrophy, from three in Königsee and Attersee to eight in Lake Geneva and Lake Constance.

Keywords

phytoplankton succession inter-lake comparison oligotrophic-eutrophic gradient central European lakes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloesch, J., 1974. Sedimentation und Phosphorhaushalt im Vierwaldstatter See (Horwer Bucht) und im Rotsee. Schweiz. Z. Hydrol. 36: 71–187.Google Scholar
  2. Bürgi, H. R., 1977. Die langjährige Entwicklung des Phytoplanktons im Bodensee (1963–1973), 1. Untersee. Ber. int. Gewässerschutzkomm. Bodensee 21, 42 pp.Google Scholar
  3. Elster, H.-J., 1982. Neuerer Untersuchungen über die Eutrophierung des Bodensees. Gwf-Wass. Abwass. 123: 277–287.Google Scholar
  4. Druart, J. C. & R. Revaclier, 1981. Etude du phytoplancton. Rapp. Etud. Rech. enterprises dans Bassin lémanique: Campagne 1981: 27–53.Google Scholar
  5. Geller, W., 1980. Stabile Zeitmuster in der Planktonsukzession des Bodensees. Verh. Ges. Ökologie 8: 373–382.Google Scholar
  6. Grim, J., 1939. Beobachtungen am Phytoplankton des Bodensees (Obersee) sowie deren rechnerische Auswertung. Int. Revue ges. Hydrobiol. 39: 193–315.CrossRefGoogle Scholar
  7. Lampert, W. & U. Schober, 1978. Das regelmäβige Auftreten von Frühjahrsmaximum und ‘Klarwasserstadium’ im Bodensee als Folge klimatischer Bedingungen und Wechselwirkungen zwischen Phyto-und Zooplankton. Arch. Hydrobiol. 82: 364–386.Google Scholar
  8. Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493–509.Google Scholar
  9. Müller, G., 1979. Das Phytoplankton des Attersees. Arb. Lab. Weyregg. 3: 153–164.Google Scholar
  10. Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarc. Ecol. 3: 141–159.Google Scholar
  11. Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterwick, 1983. Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures. J. Plankton Res. 5: 203–234.CrossRefGoogle Scholar
  12. Ruggiu, D., P. Panzani & A. Candido, 1980. Indagini sul fitoplancton. Comm. Int. prot. acque italo-svizzere; Rapp. Lago Maggiore; Campagna 1980: 185–216.Google Scholar
  13. Siebeck, O., 1982. Der Königssee, eine Limnologische Projektstudie. Abt. Limnol. zool. Inst. Univ. München, 131 pp.Google Scholar
  14. Sommer, U., 1981a. The role of r- and K-selection in the succession of phytoplankton in Lake Constance. Acta oecol., Oecol. Gener. 2: 327–342.Google Scholar
  15. Sommer, U., 1981b. Phytoplanktonbiozonosen und - sukzessionen im Bodensee/Überlinger See. Verh. Ges. Okologie 9: 33–42.Google Scholar
  16. Sommer, U., 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch. Hydrobiol. 96: 399–416.Google Scholar
  17. Sommer, U. & H. H. Stabel, 1983. Silicon comsumption and population density changes of dominant planktonic diatoms in Lake Constance. J. Ecol. 73: 119–130.Google Scholar
  18. Stabel, H. H. & M. M. Tilzer, 1981. Nährstoffkreisläufe im Überlinger See und ihre Beziehung zu den biologischen Umsetzungen. Verh. Ges. Ökologie 9: 23–32.Google Scholar
  19. Steinberg, C., 1980. Ausmaβ und Auswirkungen von Nährstoffanreicherungen auf das Phytoplankton eines subalpinen Sees. Gewäss. Abwass. 66: 175–187.Google Scholar
  20. Tilman, D., 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338–348.CrossRefGoogle Scholar
  21. Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton ecology: the role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.CrossRefGoogle Scholar
  22. Tilzer, M. M., 1984. Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J. Plankton Res. 6: 309–324.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers, Dordrecht 1986

Authors and Affiliations

  • Ulrich Sommer
    • 1
    • 2
  1. 1.Institute of LimnologyUniversity of ConstanceConstanceGermany
  2. 2.Max Planck Institute of LimnologyPlönGermany

Personalised recommendations