Skip to main content

The Use and Abuse of Multivariate Time Series Models in Hydrology

  • Chapter
Advances in the Statistical Sciences: Stochastic Hydrology

Abstract

A summary and critical review of stochastic models for multi-site hydrology are presented. In applications in the literature inadequate or improper model building procedures are often used; frequently, inefficient estimation techniques are employed, and no statistical identification or diagnostic checking is attempted. A review of recent statistical developments in multivariate ARMA models is given. Efficient estimation procedures for multi-site riverflows are presented. These techniques are demonstrated with some examples given from multi-site hydrology and from water quality studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernier, J. (1971), “Modeles probabilistes a variables hydrologiques multiples et hydrologie synthetique”. In Mathematical Models in Hydrology, IAHS-AISH Publication No. 100.

    Google Scholar 

  • Box, G. E. P., and D. R. Cox (1964), “An analysis of transformations”. Journal of the Royal Statistical Society, Series B 26, 211–252.

    MathSciNet  MATH  Google Scholar 

  • Box, G. E. P., and G. M. Jenkins (1976), Time Series Analysis, Forecasting and Control, 2nd edition. San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Camacho, F., A. I. McLeod, and K. W. Hipel (1985a), “Contemporaneous autoregressive-moving average modeling in hydrology”. Water Resources Bulletin 21, 709–720.

    Google Scholar 

  • Camacho, F., A. I. McLeod, and K. W. Hipel (1985b), “Developments in multivariate ARMA modelling in hydrology”. Proceedings of the Fourth International Hydrology Symposium on Multivariate Analysis of Hydrologic Processes, held at Colorado State University, Fort Collins, Colorado, July 15–17, 1985.

    Google Scholar 

  • Camacho, F., A. I. McLeod, and K. W. Hipel (1986a), “Contemporaneous bivariate time series”. Biometrika 73, to appear.

    Google Scholar 

  • Camacho, F., A. I. McLeod, and K. W. Hipel (1986b), “Simulation of vector ARMA time series models”. In preparation.

    Google Scholar 

  • Canfield, R. V., and L. Tseng (1979), “Homogeneous ARMA processes”. Paper presented at the American Water Resources Association Conference, Las Vegas, Nevada.

    Google Scholar 

  • Cooper, D. M., and E. F. Wood (1982a), “Identification of multivariate time series and multivariate input-output models”. Water Resources Research 18, 937–946.

    Article  Google Scholar 

  • Cooper, D. M., and E. F. Wood (1982b), “Parameter estimation of multiple input-output time series models: application to rainfall-runoff processes”. Water Resources Research 18, 1352–1364.

    Article  Google Scholar 

  • Davis, D. R. (1977), “Comment on ‘Bayesian generation of synthetic streamflows’ by G. J. Vicens, I. Rodríguez-Iturbe, and J. C. Shaake, Jr.” Water Resources Research 13, 853–854.

    Article  Google Scholar 

  • Deistler, M., W. Dunsmuir, and E. J. Hannan (1978), “Vector linear time series models: corrections and extensions”. Advances in Applied Probability 10, 360–372.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunsmuir, W., and E. J. Hannan (1976), “Vector linear time series models”. Advances in Applied Probability 8, 339–364.

    Article  MathSciNet  MATH  Google Scholar 

  • Fiering, M. B. (1964), “Multivariate technique for synthetic hydrology”. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers 90, HY5, 43–60.

    Google Scholar 

  • Finzi, G., E. Todini, and J. R. Wallis (1975), “Comment upon multivariate synthetic hydrology”. Water Resources Research 11, 844–850.

    Article  Google Scholar 

  • Hannan, E. J. (1970), Multiple Time Series. New York: Wiley and Sons.

    Book  MATH  Google Scholar 

  • Hannan, E. J. (1975), “Estimation of ARMA models”. Annals of Statistics 3, 975–981.

    Article  MathSciNet  MATH  Google Scholar 

  • Haugh, L. D. (1972), “The identification of time series interrelationships with special reference to dynamic regression models”. Ph.D. thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Haugh, L. D., and G. E. P. Box (1977), “Identification of dynamic regression models (distributed lag) connecting two time series”. Journal of the American Statistical Association 72, 121–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Hillmer, S. C., and G. C. Tiao (1979), “Likelihood function of stationary multiple autoregressive moving average models”. Journal of the American Statistical Association 74, 652–660.

    Article  MathSciNet  MATH  Google Scholar 

  • Hipel, K. W. (1985), “Stochastic research in multivariate analysis”. Keynote paper presented at the Fourth International Hydrology Symposium on “Multivariate analysis of Hydrologic Processes”, held at Colorado State University, Fort Collins, Colorado, July 15–17, 1985.

    Google Scholar 

  • Hipel, K. W., and A. I. McLeod (1978), “Preservation of the rescaled adjusted range 2. Simulation studies using Box-Jenkins models”. Water Resources Research 14, 509–516.

    Article  Google Scholar 

  • Hipel, K. W., A. I. McLeod, and W. C. Lennox (1977), “Advances in Box-Jenkins modeling 1. Model construction”. Water Resources Research 13, 567–575.

    Article  Google Scholar 

  • Hipel, K. W., A. I. McLeod, and W. K. Li (1985), “Causal and dynamic relationships between natural phenomenon”. In Time Series Analysis: Theory and Practice 6, pp. 13–34. Proceedings of the International Time Series Meeting on Hydrological, Geophysical and Spatial Time Series, held in Toronto, August 10–14, 1983, paper presented during the plenary session at the Conference on August 13, 1983). Amsterdam: North-Holland.

    Google Scholar 

  • Hong-Zhi, A., C. Zhao-Guo, and E. J. Hannan (1983), “A note on ARMA estimation”. Journal of Time Series Analysis 4, 9–17.

    Article  MathSciNet  MATH  Google Scholar 

  • Jenkins, G. M., and A. S. Alavi (1981), “Some aspects of modelling and forecasting multivariate time series”. Journal of Time Series Analysis 2, 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Jenkins, G. M., and D. G. Watts (1968), Spectral Analysis and its Applications. San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Kahan, J. P. (1974), “A method for maintaining cross and serial correlations and the coefficient of skewness under generation in a linear bivariate regression model”. Water Resources Research 10, 1245–1248.

    Article  Google Scholar 

  • Kashyap, R. L., and A. R. Rao (1976), Dynamic Stochastic Models from Empirica Data. New York: Academic Press.

    Google Scholar 

  • Kottegoda, N. T., and V. Yevjevich (1977), “Preservation of correlation in generated hydrologic samples through two-station models”. Journal of Hydrology 33, 99–121.

    Article  Google Scholar 

  • Lawrance, A. J. (1976), “A reconsideration of the Fiering two-station model”. Journal of Hydrology 29, 77–85.

    Article  Google Scholar 

  • Ledolter, J. (1978), “The analysis of multivariate time series applied to problems in hydrology”. Journal of Hydrology 36, 327–352.

    Article  Google Scholar 

  • Lettenmaier, D. P. (1980), “Parameter estimation for multivariate streamflow synthesis”. Proceedings of the Automatic Control Conference, San Francisco, August.

    Google Scholar 

  • Li, W. K., and A. I. McLeod (1981), “Distribution of the residual autocorrelations in multivariate ARMA time series models”. Journal of the Royal Statistical Society, Series B 43, 231–239.

    MathSciNet  MATH  Google Scholar 

  • Matalas, N. C. (1967), “Mathematical assessment of synthetic hydrology”. Water Resources Research 3, 937–945.

    Article  Google Scholar 

  • Matalas, N. C., and J. R. Wallis (1971), “Statistical properties of multivariate fractional noise processes”. Water Resources Research 7, 1460–1468.

    Article  Google Scholar 

  • McLeod, A. I. (1979), “Distribution of the residual cross-correlation in univariate ARMA time series models”. Journal of the American Statistical Association 74, 849–855.

    Article  MathSciNet  MATH  Google Scholar 

  • McLeod, A. I., and K. W. Hipel (1978a), “Simulation procedures for Box-Jenkins models”. Water Resources Research 14, 969–975.

    Article  Google Scholar 

  • McLeod, A. I., and K. W. Hipel (1978b), “Comment on ‘Modeling monthly hydrologic persistence’ by G. K. Young and R. U. Jettmar”. Water Resources Research 14, 699–702.

    Article  Google Scholar 

  • Mejia, J. M., and J. Rousselle (1976), “Disaggregation models in hydrology revisited”. Water Resources Research 12, 185–186.

    Article  Google Scholar 

  • Mejia, J. M., I. Rodríguez-Iturbe, and J. R. Cordova (1974), “Multivariate generation of mixtures of normal and log normal variables”. Water Resources Research 10, 691–693.

    Article  Google Scholar 

  • Nicholls, D. F., and A. D. Hall (1979), “The exact likelihood of multivariate autoregressive-moving average models”. Biometrika 66, 259–264.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Connell, P. E. (1973), “Multivariate synthetic hydrology: a correction”. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers 99, 2393–2396.

    Google Scholar 

  • O’Connell, P. E. (1974), “Stochastic modelling of long term persistence in stream flow sequences”. Ph.D. Thesis, University of London, London, England.

    Google Scholar 

  • Pegram, G. G. S., and W. James (1972), “Multilag multivariate autoregressive model for the generation of operational hydrology”. Water Resources Research 8, 1074–1076.

    Article  Google Scholar 

  • Royston, J. P. (1983), “Some techniques for assessing multivariate normality based on the Shapiro-Wilk W”. Applied Statistics 32, 121–133.

    Article  MATH  Google Scholar 

  • Salas, J. D., J. Dellur, U. Yevjevich, and W. Lane (1980), Applied Modeling of Hydrologic Time Series. Littleton, Colorado: Water Resources Publications.

    Google Scholar 

  • Salas, J. D., and G. G. S. Pegram (1977), “A seasonal multivariate multilag auto-regressive model in hydrology” . In Modeling Hydrologic Processes, Proceedings of the Third International Symposium on Theoretical and Applied Hydrology, Colorado State University, Fort Collins.

    Google Scholar 

  • Salas, J. D., G. Q. Tabios III, and P. Bartolini (1985), “Approaches to multivariate modeling of water resources time series”. Water Resources Bulletin 21, 683–708.

    Google Scholar 

  • Stedinger, J. R. (1981), “Estimating correlations in multivariate streamflow models”. Water Resources Research 17, 200–208.

    Article  Google Scholar 

  • Stedinger, J. R., and M. R. Taylor (1982a), “Synthetic streamflow generation 1. Model verification and validation”. Water Resources Research 18, 909–918.

    Article  Google Scholar 

  • Stedinger, J. R., and M. R. Taylor (1982b), “Synthetic streamflow generation 2. Effect of parameter uncertainty”. Water Resources Research 18, 919–924.

    Article  Google Scholar 

  • Tiao, G. C., and G. E. P. Box (1981), “Modeling multiple time series with applications”. Journal of the American Statistical Association 76, 802–816.

    Article  MathSciNet  MATH  Google Scholar 

  • Tiao, G. C., G. E. P. Box, M. R. Grupe, G. B. Hudak, W. R. Bell, and I. Chang (1979), “The Wisconsin multiple time series (WMTS-1) program: a prelimi nary guide”. Department of Statistics, University of Wisconsin, Madison.

    Google Scholar 

  • Valdés, B., I. Rodríguez-Iturbe, and G. J. Vicens (1977), “Bayesian generation of synthetic streamflows 2. The multivariate case”. Water Resources Research 13, 291–295.

    Article  Google Scholar 

  • Valencia R., D., and J. C. Schaake, Jr. (1973), “Disaggregation processes in stochastic hydrology”. Water Resources Research 9, 580–585.

    Article  Google Scholar 

  • Vicens, G. J., I. Rodríguez-Iturbe, and J. C. Schaake, Jr. (1975), “Bayesian generation of synthetic streamflows”. Water Resources Research 11, 827–838.

    Article  Google Scholar 

  • Wilson, G. T. (1973), “The estimation of parameters in multivariate time series models”. Journal of the Royal Statistical Society, Series B 35, 76–85.

    MATH  Google Scholar 

  • Yevjevich, U. (1963), “Fluctuation of wet and dry years, part I”. Colorado State University, Fort Collins, Colorado, Paper No. 1.

    Google Scholar 

  • Yevjevich, U. (1975), “Generation of hydrologic samples: case study of the Great Lakes”. Colorado State University, Fort Collins, Colorado, Hydrology Paper No. 72.

    Google Scholar 

  • Young, G. K., and W. C. Pisano (1968), “Operational hydrology using residuals”. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers 94, 909–923.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Camacho, F., McLeod, A.I., Hipel, K.W. (1987). The Use and Abuse of Multivariate Time Series Models in Hydrology. In: MacNeill, I.B., Umphrey, G.J., McLeod, A.I. (eds) Advances in the Statistical Sciences: Stochastic Hydrology. The University of Western Ontario Series in Philosophy of Science, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4792-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4792-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8625-7

  • Online ISBN: 978-94-009-4792-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics