Skip to main content

Part of the book series: The University of Western Ontario Series in Philosophy of Science ((WONS,volume 34))

  • 228 Accesses

Abstract

Let {X k ,J k } be a bivariate sequence of random variables, where J k is a finite ergodic Markov chain. Assume the random variables X k are conditionally independent given {Jk}. By decomposing \( {{S}_{n}} = \sum\nolimits_{{k = 1}}^{n} {{{X}_{k}}} \) the sum of i.i.d. random variables plus two ‘remainder’ terms, it is proved that Sn satisfies both the Strong Law of Large Numbers and the Law of the Iterated Logarithm under the conditions of finite first and second moments, respectively, of [Xk|Jk-1, Jk]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt, K. (1980), “Asymptotic properties of the distribution of the supremum of a random walk on a Markov chain”. Theory of Probability and its Applications 25, 309–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Borovkov, K. A. (1980), “Stability, theorems and estimates of the rate of convergence of the components of factorizations for walks defined on Markov chains”. Theory of Probability and its Applications 25, 325–334.

    Article  MATH  Google Scholar 

  • Chow, Y. S., H. Teicher, C. Z. Wei, and K. F. Yu (1981), “Iterated logarithm laws with random subsequences”. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 57, 215–251.

    Article  MathSciNet  Google Scholar 

  • Cox, D. R., and H. D. Miller (1965). The Theory of Stochastic Processes. London: Chapman and Hall.

    MATH  Google Scholar 

  • Fabens, A. J., and M. F. Neuts (1970), “The limiting distribution of the maximum term in a sequence of random variables defined on a Markov chain”. Journal of Applied Probability 7, 754–760.

    Article  MathSciNet  MATH  Google Scholar 

  • Keilson, J., and D. M. G. Wishart (1964), “A central limit theorem for processes defined on a finite Markov chain”. Proceedings of the Cambridge Philosophical Society 60, 547–567.

    Article  MathSciNet  MATH  Google Scholar 

  • Keilson, J., and D. M. G. Wishart (1965), “Boundary problems for additive processes defined on a finite Markov chain”. Proceedings of the Cambridge Philosophical Society 61, 173–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Keilson, J., and D. M. G. Wishart (1967), “Addenda to processes defined on a Markov chain”. Proceedings of the Cambridge Philosophical Society 63, 187–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Laha, R. G., and V. K. Rohatgi (1979), Probability Theory. New York: Wiley and Sons.

    MATH  Google Scholar 

  • Miller, H. D. (1961), “A convexity property in the theory of random variables defined on a finite Markov chain”. Annals of Mathematical Statistics 32, 1260–1270.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, H. D. (1962a), “A matrix factorization problem in the theory of random variables defined on a finite Markov chain”. Proceedings of the Cambridge Philosophical Society 58, 268–285.

    Article  MATH  Google Scholar 

  • Miller, H. D. (1962b), “Absorption probabilities for sums of random variables defined on a finite Markov chain”. Proceedings of the Cambridge Philosophical Society 58, 286–298.

    Article  MATH  Google Scholar 

  • Mogu’skii, A. A. (1976), “Factorization identities for processes with independent increments given on a finite Markov chain”. Theory of Probability and Mathematical Statistics 11, 87–96.

    Google Scholar 

  • O’Brien, G. L. (1974), “Limit theorems for sums of chain-dependent processes”. Journal of Applied Probability 11, 582–587.

    Article  MathSciNet  MATH  Google Scholar 

  • Presman, E. L. (1969), “Methods of factorization and a boundary problems for sums of random variables defined on a Markov chain”. (In Russian.) Izvestija Akademii Nauk SSSR, Serija Matematiceskaja 33, 861–990.

    MathSciNet  MATH  Google Scholar 

  • Pyke, R., and R. Schaufele (1964), “Limit theorems for Markov renewal processes”. Annals of Mathematical Statistics 35, 1746–1764.

    Article  MathSciNet  MATH  Google Scholar 

  • Resnick, S. I. (1971), “Asymptotic location and recurrence properties of maxima of a sequence of random variables defined on a Markov chain”. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 18, 197–217.

    Article  MathSciNet  Google Scholar 

  • Resnick, S. I., and M. F. Neuts (1970), “Limit laws for maximum of a sequence of random variables defined on a Markov chain”. Advances in Applied Probability 2, 323–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Richter, W. (1965), “Limit theorems for sequences of random variables with sequences of random indices”. Theory of Probability and its Applications 10, 74–84.

    Article  MATH  Google Scholar 

  • Takács, L. (1978), “On fluctuations of sums of random variables”. Studies in Ergodic Theory: Advances in Mathematics Supplementary Studies 2, 45–93. New York: Academic Press.

    Google Scholar 

  • Wolfson, D. B. (1977), “Limit theorems for sums of a sequence of random variables defined on a Markov chain”. Journal of Applied Probability 14, 614–620.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Ramsay, C.M. (1987). Strong Limit Theorems for Sums of Random Variables Defined on a Finite Markov Chain. In: MacNeill, I.B., Umphrey, G.J., Bellhouse, D.R., Kulperger, R.J. (eds) Advances in the Statistical Sciences: Applied Probability, Stochastic Processes, and Sampling Theory. The University of Western Ontario Series in Philosophy of Science, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4786-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4786-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8622-6

  • Online ISBN: 978-94-009-4786-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics