Skip to main content

Transformation Toughening of Ceramics

  • Chapter
Fracture of Non-Metallic Materials

Part of the book series: Ispra Courses ((ISPA))

  • 380 Accesses

Abstract

Ceramic materials can be considerably toughened by utilizing the phase transformation of Zr02 particles. The transformation is nucleation-controlled and invariably stress-assisted. Three main toughening mechanisms are operative: stress-induced transformation, microcracking and crack deflection. Some toughened ceramics with low critical transformational stress “exhibit transformation plasticity and memory effects analogous to martensitic metal alloys. Micro- structural features of the three Zr02 toughened ceramic (ZTC) groups are presented: Partially — stabilized Zr02 (PSZ), tetragonal Zr02 polycrystals (TZP) and dispersion -toughened ceramics, e.g. ZT-AI2O3, ZT-mullite, etc. The mechanical properties of some ZTC are compared with predicted values. Since ZTC generally exhibit a disappointing high-temperature behavior, some strategies are outlined to overcome the characteristic deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.H. Heuer and L.W. Hobbs (eds.), Science and Technology of Zirconia, in Advances in Ceramis, Vol. 3, American Ceramic Society, Columbus, Oh, 1981.

    Google Scholar 

  2. N. Claussen, M. Rühle and A.H. Heuer (eds.), Science and Technology of Zirconia II, in Advances in Ceramics, Vol. 12, American Ceramic Society, Columbus, OH, 1984.

    Google Scholar 

  3. M. Riihle and A.H. Heuer, p. 14 ff in ref. 2

    Google Scholar 

  4. A.H. Heuer, N. Claussen, W.M. Kriven and M. Rühle, J. Am. Ceram. Soc., 65 (1982) 642.

    Article  Google Scholar 

  5. A.H. Heuer and M. Riihle, to be published in Acta Met.

    Google Scholar 

  6. A.G. Evans and R.M. Cannon, to be published in Acta Met.

    Google Scholar 

  7. S. Schmander and H. Schubert, submitted to J. Am. Ceram. Soc.

    Google Scholar 

  8. A.G. Evans, Acta Met., 36 (1978) 1845.

    Article  Google Scholar 

  9. A.G. Evans, p. 193 ff in ref. 2.

    Google Scholar 

  10. R.M. McMeeking and A.G. Evans, J. Am. Ceram. Soc., 65 (1982) 242.

    Article  Google Scholar 

  11. B. Budiansky, J.W. Hutchinson and J. Lambropoulos, Int. J. Sol. Structures, 19 (1983) 337.

    Article  MATH  Google Scholar 

  12. M. Riihle, A. Strecker, D. Waidelich and B. Krans, p. 256 ff in ref. 2.

    Google Scholar 

  13. A. King and P.J. Yarorsky, J. Am. Ceram. Soc., 51 (1968) 38.

    Article  Google Scholar 

  14. M. Röhle, N. Claussen and A.H. Heuer, p. 352 ff in Ref. 2.

    Google Scholar 

  15. N. Claussen, J. Am. Ceram. Soc. 59 (1976) 49.

    Article  Google Scholar 

  16. M. Riihle, N. Claussen and A.H. Heuer, to be published in J. Am. Ceram. Soc..

    Google Scholar 

  17. T. Kosmac, M.V. Swain and N. Claussen, Mat. Sci. Eng., 71 (1985) 57.

    Article  Google Scholar 

  18. K.T. Faber, p. 293 ff in ref. 2.

    Google Scholar 

  19. J.W. Hutchinson, ref. 59 in ref. 6.

    Google Scholar 

  20. K.T. Faber and A.G. Evans, Acta Met., 31 (1983) 565.

    Article  Google Scholar 

  21. H. Ruf and A.G. Evans, J. Am. Ceram. Soc., 66 (1983) 328.

    Article  Google Scholar 

  22. N. Claussen, to be published in Fracture Mechanics of Ceramics, vol. 7/8, 1986.

    Google Scholar 

  23. N. Claussen and M. Riihle, p. 137 ff. in ref. 1

    Google Scholar 

  24. D.J. Green, F.F. Lange and M.R. James, p. 240 ff in ref. 2

    Google Scholar 

  25. N. Claussen, p. 325 ff in ref. 2

    Google Scholar 

  26. O. Richmond, W.C. Leslie and H.A. Wriendt, ASTM Trans. Q. 57 (1964) 294.

    Google Scholar 

  27. B.R. Lawn and D.B. Marshall, Phys. Chem. Classes, 18 (1977) 7.

    Google Scholar 

  28. M.V. Swain, J. Am. Ceram. Soc., 68 (1985) C 97.

    Google Scholar 

  29. M.V. Swain, to be published in J. Am. Ceram. Soc.

    Google Scholar 

  30. K. Tsukuma, K. Ueda and M. Shimada, J. Am. Ceram. Soc., 68 0 985) C 4.

    Google Scholar 

  31. Y. Fu, A.G. Evans and W.M. Kriven, J. Am. Ceram. Soc. 67 0984) 626.

    Google Scholar 

  32. F. Wakai, GIRIN, personal communication.

    Google Scholar 

  33. I.W. Chen, to be published in J. Am. Ceram. Soc.

    Google Scholar 

  34. T. Soma and M. Matsui, Japanese Patent Appl. JP P131818-1983.

    Google Scholar 

  35. R.C. Garvie, p. 465 ff in ref. 2.

    Google Scholar 

  36. N. Claussen, Mat. Sci. Eng. 71 (0985) 23

    Google Scholar 

  37. M.V. Swain, to be published in Acta Met.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Claussen, N. (1987). Transformation Toughening of Ceramics. In: Herrmann, K.P., Larsson, L.H. (eds) Fracture of Non-Metallic Materials. Ispra Courses. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4784-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4784-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8621-9

  • Online ISBN: 978-94-009-4784-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics