Skip to main content

Thermal Crack Growth in Self-Stressed Glassy Compounds

  • Chapter

Part of the book series: Ispra Courses ((ISPA))

Abstract

Curved thermal cracks are considered running along special principal stress trajectories of thermal stress fields originated in different shaped glassy two-phase solids by a steady cooling process. The resulting boundary-value problems of the stationary plane thermoelasticity are solved by means of the method of complex analysis as well as of the finite element method. Moreover, using appropriate directional criteria established for crack path prediction, the further extension of a thermal crack starting at the external surface of a glassy two-phase compound with a circular cross section has been determined. Furthermore, the corresponding fracture mechanical data like crack edge displacements, strain energy release rates and stress intensity factors, respectively, have been calculated by additional consideration of the influence of inner stress concentrators onto the paths of quasistatic extending thermal cracks. Finally, the theoretical investigations are compared with calculations concerning the quasistatic growth of interface cracks in thermally loaded glassy multiphase solids as well as with the results of cooling experiments. Thereby the latter concentrate on the determination of experimental principal stress trajectories in stable uncracked bimaterial specimens as well as on the evaluation of fracture mechanical data governing the propagation behaviour of curved thermal cracks by means of the shadow optical method of caustics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. England, A., ‘An arc crack around a circular elastic inclusion’, J. Appl. Mech. 33 (1966), 637–640.

    Google Scholar 

  2. Toya, M., ‘A crack along the interface of a circular inclusion embedded in an infinite solid’, J. Mech. Phys. Solids 22 (1974), 325–348.

    Article  ADS  MATH  Google Scholar 

  3. Herrmann, K., ‘Curved thermal crack growth in the interfaces of a unidirectional Carbon-Aluminum composite’, Mechanics of Composite Materials, Recent Advances (Eds. Z. Hashin and C. T. Herakovich), Pergamon Press, New York (1983), 383–397.

    Google Scholar 

  4. Cotterell, B. and Rice, J.R., ‘Slightly curved or kinked cracks’, Intl.J. of Fracture 16 (1980), 155–169.

    Article  Google Scholar 

  5. Bergkvist, H. and Guex, L., ‘Curved crack propagation’, Intl. J. of Fracture 15 (1979), 429–441.

    Article  Google Scholar 

  6. Nemat-Nasser, S., ‘On stability of the growth of interacting cracks, and crack kinking and curving in brittle solids’, Numerical Methods in Fracture Mechanics (Eds. D. R. J. Owen and A. R. Luxmoore), Pineridge Press, Swansea (1980), 687–706.

    Google Scholar 

  7. Palaniswamy, K. and Knauss, W. G., ‘On the problem of crack extension in brittle solids under general loading‘, Mechanics Today 4 (Ed. S. Nemat-Nasser), Pergamon Press, New York (1978), 87–148.

    Google Scholar 

  8. Kerkhof, F., Bruchvorgange in Glasern, Verlag der Deutschen Glas- technischen Gesellschaft Frankfurt (Main) (1970).

    Google Scholar 

  9. Hieke, M., ‘Die RiBentstehung in Glasscheiben unter Eigenspannun- gen’, Z. Naturforsch. 15a (1960), 543–546.

    ADS  Google Scholar 

  10. Hieke, M. and Loges, F., ‘Das ZerreiBen von Glasern unter dem Ein- fluB definierter Eigenspannungsquellen’, Z. Angew. Phys. 22 (1966), 14–19.

    Google Scholar 

  11. Blauel, H., Ph. D. Dissertation, Freiburg University (1970).

    Google Scholar 

  12. Karihaloo, B. L. and Nemat-Nasser, S., ‘Thermally induced crack curving in brittle solids’, Analytical and Experimental Fracture Mechanics (Eds. G. C. Sih and M. Mirabile), Sijthoff & Noordhoff, Alphen,aan den Rijn (1981), 265–272.

    Google Scholar 

  13. Grebner, H. and Hermann, K., ‘Quasistatische Ausbreitung eines ge- krummten Warmespannungsrisses in einem Zweikomponentenmaterial’. DVM-Berichte, 12. Sitzung des AK Bruchvorgange, Freiburg (1980), 207–214.

    Google Scholar 

  14. Grebner, H., Ph. D. Dissertation, Paderborn University (1983).

    Google Scholar 

  15. Herrmann, K. and Grebner, H., ‘Curved thermal crack growth in a bounded brittle two-phase solid’, Intl. J. of Fracture 19 (1982), R 69 – R 74.

    Google Scholar 

  16. Herrmann, K. P. and Grebner, H., ‘Curved thermal crack growth in nonhomogeneous materials with different shaped external boundaries’, I. Theoretical results, Theoretical and Applied Fracture Mechanics 2 (1984), 133–146.

    Article  Google Scholar 

  17. Herrmann, K. P. and Grebner, H., ‘Curved thermal crack growth in nonhomogeneous materials with different shaped external boundaries’, II. Experimental results, Theoretical and Applied Fracture Mechanics 2 (1984), 147–155.

    Article  Google Scholar 

  18. Herrmann, K. P. and Grebner, H., ‘Slow thermal crack growth in thermally loaded two-phase composite structures containing inner stress concentrators’, Life Assessment of Dynamically Loaded Materials and Structures (Ed. L. Faria) 2, Laboratorio Nacional de Engenharia e Tecnologia Industrial, Lissabon (1984), 691–700.

    Google Scholar 

  19. Herrmann, K. P. and Grebner, H., ‘Quasistatic thermal crack extension in the interfaces of bounded self-stressed multiphase compounds’, Theoretical and Applied Fracture Mechanics 4 (1985), 127–135.

    Article  Google Scholar 

  20. Hieke, M. and Herrmann, K., ‘Ober ein ebenes inhomogenes Problem der Thermoelastizitat’, Acta Mechanica 6 (1968), 42–55.

    Article  MATH  Google Scholar 

  21. Muskhelishvili, N. I., Einige Grundaufgaben zur mathematischen Elastizitatstheorie, Fachbuchverlag Leipzig (1971).

    Google Scholar 

  22. Herrmann, K. and Grebner, E., ’Uber ein Randwertproblem der Thermo- viskoelastizitatstheorie‘, ZAMM 60 (1980), T 120–T 122.

    Google Scholar 

  23. Rybicki, E. F. and Kanninen, M. F., ‘A finite element calculation of stress intensity factors by a modified crack closure integral’, Eng. Fracture Mechanics 9 (1979), 931–938.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Herrmann, K.P. (1987). Thermal Crack Growth in Self-Stressed Glassy Compounds. In: Herrmann, K.P., Larsson, L.H. (eds) Fracture of Non-Metallic Materials. Ispra Courses. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4784-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4784-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8621-9

  • Online ISBN: 978-94-009-4784-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics