Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 192))

Abstract

We are concerned with a globally averaged, time dependent climate model based on a simple hydrological cycle and the heat balance of an equivalent atmosphere and ocean. The domains are coupled by exchange of heat and moisture at their interface. Clouds and precipitation are related to humidity and the temperature of the atmosphere, while ice formation is related to the temperature of the ocean. The model is formulated as an initial value problem and integrated until an asymptotic equilibrium state is reached. The stability of the system against perturbations decreases and its sensitivity increases if variable vapor/cloud cover/ice cover is allowed to feed back into the radiation budget. The model also shows that clouds tend to cool rather than warm the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adem, I., ‘On the theory of the general circulation of the atmosphere’ Tellus, 14, 102, 1962.

    Article  Google Scholar 

  • Gear, C.W., ‘Numerical initial value problems in ordinary differential equations’, Prentice Hall, New York, 1971.

    Google Scholar 

  • Gill, A.E., ‘Atmosphere-ocean dynamics’, Academic Press, New York, 1982.

    Google Scholar 

  • Hansen, I., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., Russell, G., ‘Climate impact of increasing atmospheric carbon dioxide’, Science, 213, 957, 1981.

    Article  Google Scholar 

  • Lacis, A.A., and J.E. Hansen, ‘A parameterization for the absorption of solar radiation in the earth’s atmosphere’, J. Atmos. Sci., 31 118, 1974.

    Article  Google Scholar 

  • North, G.R., ‘Energy balance climate models’, Reviews of Geophys. and Space Phys., 19, 91, 1981.

    Article  Google Scholar 

  • Oort, A.H., ‘Global atmospheric circulation statistics’, 1958–1973, NOAA, Rockville, 1983.

    Google Scholar 

  • Paltridge, G.W., ‘Global cloud cover and earth surface temperature’, J. Atmos. Sci., 31, 1571, 1974.

    Article  Google Scholar 

  • Paltridge, G.W., ‘Global dynamics and climate change — a system of minimum entrophy exchange’, Quart. J.R. Met. Soc., 101, 475, 1975.

    Article  Google Scholar 

  • Paltridge, G.W., and C.M.R. Platt, ‘Radiative processes in meteorology and climatology’, Elsevier, New York, 1976.

    Google Scholar 

  • Pethukov, V.K., ‘The long-period process of heat and moisture exchange in the presence of broken clouds’, Izv. Atmos. Oceanic Phys., 11, 133, 1974.

    Google Scholar 

  • Ramanathan, V., ‘The role of ocean-atmosphere interactions in the CO2 climate problem’, J. Atmos. Sci., 38, 918, 1981.

    Article  Google Scholar 

  • Roads, J.O. and G.K. Vallis, ‘An energy balance climate model with cloud feedbacks’, Tellus, 36A, 236, 1984.

    Google Scholar 

  • Saltzman, B., and R.E. Moritz, ‘A time dependent climatic feedback system involving sea-ice extent, ocean temperature, and CO2’, Tellus, 32, 93, 1980.

    Article  Google Scholar 

  • Schneider, S.H., Washington, W.H., and R.M. Chervin, ‘Cloudiness as a climatic feedback mechanism’, J. Atmos. Sci., 35, 2207, 1978.

    Article  Google Scholar 

  • Sellers, W.D., ‘Physical climatology’, The University of Chicago press, Chicago, 1965.

    Google Scholar 

  • Sellers, W.D., ‘A two-dimensional global climate model’, Mon. Wea. Rev., 104, 233, 1976.

    Article  Google Scholar 

  • Van den Dool, H.M., ‘On the role of cloud amount in an energy balance model of the earth’s climate’, J. Atmos. Sci., 37, 939, 1980.

    Article  Google Scholar 

  • Wang, W.-C., Rosow, W.B., Yao, M.-S., and M. Wolfson, ‘Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback’, J. Atmos. Sci., 38, 1167, 1981.

    Article  Google Scholar 

  • Weare, B.C. and F.M. Snell, ‘A diffusive thin atmosphere structure as a feedback mechanism in global climate modeling’, J. Atmos. Sci., 31, 1725, 1974.

    Article  Google Scholar 

  • Wetherald, R.T. and S. Manabe, ‘Cloud cover and climate sensitivity’, J. Atmos. Sci., 37, 1485, 1980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Jentsch, V. (1987). Cloud-Ice-Vapor Feedbacks in a Global Climate Model. In: Nicolis, C., Nicolis, G. (eds) Irreversible Phenomena and Dynamical Systems Analysis in Geosciences. NATO ASI Series, vol 192. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4778-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4778-8_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8620-2

  • Online ISBN: 978-94-009-4778-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics