Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 190))

Abstract

The oceans are massive moving reservoirs of heat, moisture and energy underlying a relatively diffuse atmosphere, whose entire extent contains two or three cm of water and perhaps the heat found in 5 m of ocean surface water. The pattern of energy flux involves a multiple communication between air and sea: of the net incoming solar at the top of the atmosphere some 73% is absorbed by the sea. The partition of that heating between internal and gravitational potential energy is depth dependent, but vastly favors internal energy (perhaps by a factor of 103). But in a perfect gas the ratio of potential to internal energy produced by heating is far different (~ (1-γ), where γ is the ratio of specific heats), such that fully 40% of the heat flowing back into the atmosphere is mechanically active. By gravitational/rotational adjustment this potential energy generates kinetic energy of the symmetric circulation, which breaks down further in baroclinic instability. The zonal winds, thus intensified, set up the oceanic gyres whose potential energy exceeds kinetic by a factor (L/Lρ)2 ~ 103, where L is the gyre-scale and Lρ the gravest Rossby radius of deformation. This not to belittle the direct production of potential energy in the oceans by buoyancy flux from the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G.K., 1969, Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids 12, 233–238.

    Article  Google Scholar 

  • Bunker, A.F. and L.V. Worthington, 1976, Energy exchange charts of the North Atlantic Ocean. Bull. Amer. Met. Soc. 57, 670–678.

    Article  Google Scholar 

  • Bretherton, F.P., 1966, Critical-later instability in baroclinic flows, Q. Journ. Roy. Met. Soc. 92, 325–334.

    Article  Google Scholar 

  • Brown, E., W.B. Owens and H.L. Bryden, 1986, Eddy potential vorticity fluxes in the Gulf Stream recirculation, J. Phys. Oceanog. 16, 523–531.

    Article  Google Scholar 

  • Bryden, H.L., 1983, Sources of eddy energy in the Gulf Stream recirculation region. J. Marine Res. 40, 1047–1068.

    Google Scholar 

  • Colin de Verdiere, A., 1977, Ph.D thesis, WHOI-MIT Joint Program in Oceanography.

    Google Scholar 

  • Colin de Verdiere, A., 1979, Mean flow generation by topographic Rossby waves, J. Fluid Mech. 94, 39–64.

    Article  Google Scholar 

  • Cox, M.J., 1985, An eddy-resolving numerical model of the ventilated thermocline, J. Phys. Oceanog. 15, 1312–1324.

    Article  Google Scholar 

  • Cox, M.J. and K. Bryan, 1983, A numerical model of the ventilated thermocline, J. Phys. Oceanogr., 698–705.

    Google Scholar 

  • Ertel, H., 1942, Ein neuer hydrodynamischer Wirbelsatz, Meteorol. Zeit. 59, 277–281.

    Google Scholar 

  • Fjortoft, R., 1953, On the changes in the spectral distribution of kinetic energy for two-dimensional nondivergent flow, Tellus 5, 225–230.

    Article  Google Scholar 

  • Gargett, A. 1984, Vertical eddy diffusivity in the ocean interior, J. Marine Res. 42, 359–393.

    Article  Google Scholar 

  • Green, J.S.A., 1970, Transfer properties of the large-scale eddies and the general circulation, Q. Journal Roy. Met. Soc., 96, 157–185.

    Article  Google Scholar 

  • Haidvogel, D.P. and P.B. Rhines, 1983, Waves and circulation driven by oscillatory winds in an idealized ocean basin, Geophys. Astrophys. Fluid Dyn. 25, 1–63.

    Article  Google Scholar 

  • Hendershott, M. 1986, The ventilated thermocline in quasigeostrophic approximation, submitted to J. Phys. Oceanog.

    Google Scholar 

  • Hogg, N.G., 1983, A note on the deep circulation fo the western North Atlantic; its nature and causes. Deep-Sea Res., 30, 945–961.

    Article  Google Scholar 

  • Holland, W.R., T. Keffer, and P. Rhines, 1984, The dynamics of the oceanic circulation: the potential vorticity field. Nature, 308, 698–705.

    Article  Google Scholar 

  • Holland, W.R., and P.B. Rhines, 1980, An example of eddy-driven circulation, J. Phys. Oceanogr. 10, 1010–1031.

    Article  Google Scholar 

  • Hoskins, B.J., 1983, Modelling of the transient eddies and their feedback on the mean flow, in Large-scale dynamic processes in the atmosphere, Hoskins and Pearce eds., Academic Press, London.

    Google Scholar 

  • Hoskins, B.J., M.E. McIntyre and A.W. Robertson, 1986, On the use and significance of isentropic potential vorticity maps, Q. Journal Royal Met. Soc. 111, 877–946.

    Google Scholar 

  • Ierly, G. and W.R. Young, 1983, Can the western boundary layer affect the potential vorticity distribution in the Sverdrup interior of the wind gyre?, J. Phys. Oceanogr. 13, 1753–1763.

    Article  Google Scholar 

  • Keffer, T., 1984, The ventilation of the world ocean: maps of potential vorticity. J. Phys. Oceanog. 15, 509–523.

    Article  Google Scholar 

  • Leetma, A., P.P. Niiler, and H. Stommel, 1977, Does the Sverdrup relation account for the wind-driven ocean circulation?, J. Marine Res. 35, 1–9.

    Google Scholar 

  • Levitus, S., 1982, Climatological atlas of the world ocean, NOAA Professional Paper 13, U.S. Dept. of Commerce.

    Google Scholar 

  • Luyten, J., J. Pedlosky and H. Stommel, 1983a, The ventilated thermocline, J. Phys. Oceanogr 13, 292–309.

    Article  Google Scholar 

  • Luyten, J., J. Pedlosky and H. Stommel, 1983b, Climatic inferences form the ventilated thermocline, Climatic Change, 5, 183–191.

    Google Scholar 

  • McNally, G.J., W.C. Patzert and A.D. Kirwin, and A.C. Vastano, 1983, The near-surface circulation of the North Pacific using satellite tracked drifting buoys, J. Geophys. Res. 88, 7507–7518

    Article  Google Scholar 

  • Montgomery, R.B., 1938, Circulation in the upper layers of the southern North Atlantic deduced with the use of isentropic analysis. Papers in Phys. Oceanogr. and Meteorol. 6, 55 pp.

    Google Scholar 

  • Musgrave, D. 1984, A numerical study of the roles of sub-gyre scale mixing and the western bondary current on homogenization of a passive tracer. J. Geophys. Res., 90, 7037–7043.

    Article  Google Scholar 

  • Pedlosky, J. 1983, On the relative importance of ventilation and mixing of potential vorticity in mid-ocean gyres, J. Phys. Oceanog. 13, 2121–2122.

    Article  Google Scholar 

  • Pedlosky, J. and W.R. Young, 1983, Ventilation, potential vorticity homogenization and the structure of the ocean circulation. J. Phys Oceanog. 13, 2020–2037.

    Article  Google Scholar 

  • Plumb, R.A., 1979, Eddy fluxes of conserved quantities by small-amplitude waves, J. Atmos. Sci. 36, 1699–1704.

    Article  Google Scholar 

  • Reid, J.L. and A. Mantyla, 1978, On the mid-depth circulation of the North Pacific Ocean, J. Phys. Oceanogr., 8, 46–951.

    Article  Google Scholar 

  • Rhines, P.B., 1977, The dynamics of unsteady currents, in The Sea, vol. 6, E.D. Goldberg ed., Wiley Interscience, N.Y., 189–319.

    Google Scholar 

  • Rhines, P.B., 1986, Vorticity dynamics of the oceanic general circulation, Ann. Revs. Fluid Mech. 18, 433–497.

    Article  Google Scholar 

  • Rhines, P.B., W.R. Holland and J.C. Chow 1985, Experiments with buoyancy-driven ocean circulation, NCAR Technical Note TN-260+STR, National Center for Atmospheric Research.

    Google Scholar 

  • Rhines, P.B. and W.R. Young, 1982a, Homogenization of potential vorticity in planetary gyres, J. Fluid Mech. 122, 347–368.

    Article  Google Scholar 

  • Rhines, P.B. and W.R. Young, 1982b, A theoretical study of the wind driven circulation, I., mid-ocean gyres, J. Marine Res., 40, 559–596.

    Google Scholar 

  • Sarmiento, J.L., 1983, A tritium box model of the North Atlantic thermocline, J. Phys. Oceanogr. 13, 1269–1274.

    Article  Google Scholar 

  • Sarmiento, J.L., 1983b, Simulation of bomb tritium entry into the Atlantic Ocean, J. Phys. Oceanogr. 13, 24–1939.

    Google Scholar 

  • Schmitz, W., W. Holland and J.F. Price, 1983, Mid-latitude mesoscale variability, Rev. Geophys. Space Phys. 21, 1109–1119.

    Article  Google Scholar 

  • Stommel, H., A. Arons, and A. Faller, 1958, Some examples of stationary planetary flow patterns in bounded basins, Tellus 10, 179–187.

    Article  Google Scholar 

  • Talley, L. 1985, Ventilation of the subtropical North Pacific: the shallow salinity minimum. J. Phys. Oceanog. 15, 633–649.

    Article  Google Scholar 

  • Taylor, G.I., 1917, Observations and speculations on the nature of turbulent motions, in G.I. Taylor, Scientific Papers, G.K. Batchelor ed., Cambridge Unversity Press, 1960.

    Google Scholar 

  • Taylor, G.I., 1921, Diffusion by continuous movements, in G.I. Taylor, Scientific Papers, G.K. Batchelor ed., Cambridge University Press, 1960.

    Google Scholar 

  • Vasholz, D.P., and L.J. Crawford, 1985, Dye dispersion in the seasonal thermocline, J. Phys. Oceanog. 15, 695–712.

    Article  Google Scholar 

  • Wallace, M., 1978, Trajectory slopes, conuntergradient heat fluxes and mixing by lower stratospheric waves, J. Atmos. Sci. 35, 554–558.

    Article  Google Scholar 

  • Warren, B., 1983, Why is no deep water formed in the North Pacific? J. Marine Res., 42, 327–347.

    Article  Google Scholar 

  • Welander, P., 1971, The thermocline problem. Phil. Trans. Roy. Soc. A270, 69–73

    Google Scholar 

  • Whitehead, J.A., 1975, Mean flow dirven by circulaiton on a β-plane, Tellus 27, 358–364.

    Article  Google Scholar 

  • Wunsch, C. and D. Roemmich, 1985, Is the North Atlantic in Sverdrup Balance?, J. Phys. Oceanog. 15, 1876–1879.

    Article  Google Scholar 

  • Wust, G., 1935, Schichtung und Zirkulation des Atlantischen Ozeans. Die Stratosphare. Reports of the Meteor expedition, repub. by W. J. Emery 1978, Amerind, New Delhi, 112pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Rhines, P.B. (1986). Lectures on Ocean Circulation Dynamics. In: Willebrand, J., Anderson, D.L.T. (eds) Large-Scale Transport Processes in Oceans and Atmosphere. NATO ASI Series, vol 190. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4768-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4768-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8617-2

  • Online ISBN: 978-94-009-4768-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics