Part of the Atmospheric Sciences Library book series (volume 5)


From the viewpoint of aeronomy, the atmosphere can be considered to be a mixture of gases exposed to the electromagnetic spectrum of the sun. An understanding of the dynamical and photochemical processes which occur in this environment requires consideration of atmospheric radiative transfer. For example. the rate of reaction between two constituents generally depends on the local temperature (see Chapter 2), which is related to the effects of absorption, scattering, and emission of solar and terrestrial radiation. Further, solar radiation of particular energies can dissociate and ionize atmospheric molecules to produce reactive ions and radicals which participate in many of the important atmospheric chemical processes.


Optical Depth Absorption Cross Section Solar Irradiance Solar Zenith Angle Lower Stratosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, M., Ultraviolet solar radiation released to mesospheric processes, pp. 149–159, in: Fiocco, G. (Ed.), Mesospheric Models and Related Experiments, D. Reidel (Dordrecht, Holland), 1971.Google Scholar
  2. Ackerman, M., F. Biaume, and M. Nicolet, Absorption in the spectral range of the Schumann-Runge Bands, Canad. J. Chem., 47, 1834, 1969.CrossRefGoogle Scholar
  3. Allen, M. and J.E. Frederick, Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge Bands, J. Atmos. Sci., 39, 2066, 1982.CrossRefGoogle Scholar
  4. Apruzese, J.P., D.F. Strobel and M.R. Schoeberl, Parameterization of IR cooling in the middle atmosphere dynamics model, 2, Non LTE radiative transfer and the globally averaged temperature of the mesosphere and lower thermosphere, in press, J. Geophys. Res., 1984.Google Scholar
  5. Arnold, J.O., E.E. Whiting and S.R. Langhoff, MCSF + Cl wavefunctions and properties of the X2Π and A2Π states of ClO, J. Chem. Phys., 66, 4459, 1977.CrossRefGoogle Scholar
  6. Augustsson, T. and V. Ramanathan, A radiative-convective model study of the CO2 climate problem, J. Atmos. Sci., 34, 448, 1977.CrossRefGoogle Scholar
  7. Banks, P., and G. Kockarts, Aeronomy, Academic Press, (New York), 1973.Google Scholar
  8. Bass, A.M. and A.H. Laufer, Extinction coefficients of ozomethane and dimethyl mercury in the near ultra-violet, J. Photochem., 2, 465, 1974.Google Scholar
  9. Bass, A.M., A. E. Ledford and A.H. Laufer, Extinction coefficients of NO2 and N2O4, J. Res. NBS, 80A, 143, 1976.Google Scholar
  10. Bass, A.M., L.C. Glasgow, C. Miller, J.P. Jesson and D.L. Filkin, Temperature dependent cross-sections for formaldehyde [CH2O]: The effect of formal-dehyde on stratospheric chlorine chemistry, Planet. Sp. Sci., 28, 675, 1980.CrossRefGoogle Scholar
  11. Bass, A.M. and R.J. Paur, UV absorption cross sections for ozone: The temperature dependence, J. Photochem., 17, 141, 1981.CrossRefGoogle Scholar
  12. Bates, D.R. and P.B. Hays, Atmospheric nitrous oxide, Planet. Sp. Sci., 15, 189, 1967.CrossRefGoogle Scholar
  13. Baum, W.A., F.S. Johnson, J.J. Obserly, C.C. Rockwood, C.V. Strain, and R. Tousey, Solar ultraviolet spectrum to 88 kilometers, Phys. Rev., 70, 781, 1946.CrossRefGoogle Scholar
  14. Bell, L., Notes on the absorption spectrum of nitrogen peroxide, Amer. Chem. J., 7, 32, 1885.Google Scholar
  15. Bethke, G.W., Oscillator strengths in the far ultraviolet, I. Nitric oxide, J. Chem. Phys., 31, 662, 1959.CrossRefGoogle Scholar
  16. Biaume, F., Determination de la Valeur Absolute de l’absorption dans les bandes du systeme de Schumann-Runge de l’oxygene moleculaire, Aero nomica Acta, Brussels, A NO. 100, 1972a.Google Scholar
  17. Biaume, F., Structure de rotation des bandes 0-0 a 13-0 du systeme de Schumann-Runge de la molecule d’oxygene, Acad. Roy. Belg., Mem. Cl. Sci. Coll In -8 Deg., 2E Ser., Tome 40, Fascicule 2, 66 pp., 1972b.Google Scholar
  18. Biaume, F., Nitric acid vapour absorption cross-section spectrum anti its photodissociation in the stratosphere, J. Photochem., 2, 139, 1973.CrossRefGoogle Scholar
  19. Blake, A.J., J.H. Carver and G.N. Haddad, Photoabsorption cross-sections of molecular oxygen between 1250 A and 2350 A, J. Quant. Spect. Rad. Transf., 6, 451, 1966.CrossRefGoogle Scholar
  20. Bossy, L. and M. Nicolet, On the variability of Lyman alpha with solar activity, Planet. Sp. Sci., 29, 907, 1981.CrossRefGoogle Scholar
  21. Bossy, L., Solar indices and solar UV irradiances, Planet. Space Sci., 31, 977, 1983.CrossRefGoogle Scholar
  22. Brasseur, G. and P.C. Simon, Stratospheric chemical and thermal response to long-term variability in solar UV irradiance, J. Geophys. Res., 86, 7343, 1981.CrossRefGoogle Scholar
  23. Brasseur, G., A. De Rudder and P.C. Simon, Implication for stratospheric composition of a reduced absorption cross section in the Herzberg continuum of molecular oxygen, Geopys. Res. Lett., 10, 20, 1983.CrossRefGoogle Scholar
  24. Brewer, A.W. and A.W. Wilson, Measurements of solar ultraviolet radiation in the stratosphere, Quart. J. Roy. Meteorol. Soc., 91, 452, 1965.CrossRefGoogle Scholar
  25. Broadfoot, A.L., The solar spectrum 2100–3200 A, Astrophys. J., 173, 681, 1972.CrossRefGoogle Scholar
  26. Brueckner, G.E., Solar radiometry: Spectral irradiance measurements, Adv. Space Res., 2, 177, 1983.CrossRefGoogle Scholar
  27. Brusa, R.W. and C. Frohlich, Recent solar constant determinations from high altitude balloons, Paper presented at the Symposium on the Solar Constant and the Spectral Distribution of Solar Irradiance, IAMAP third Scientific Assembly, Published by the Radiation Commission, Boulder, CO, USA, 1982.Google Scholar
  28. Callear, A.B. and M.J. Pilling, Fluorescence of nitric oxide, 6. Predissociation and cascade quenching in NO D2Σ+ (v = 0) and NO C2Π (v = 0), and the oscillator strengths of the σ (0,0) and (0,0) bands, Trans. Faraday Soc., 66, 1886, 1970b.CrossRefGoogle Scholar
  29. Carver, J.H., H.P. Gies, T.I. Hobbs, H.R. Lewis and D.C. McCoy, Temperature dependence of the molecular oxygen photoabsorption cross section near the H Lyman alpha line, J. Geophys. Res., 82, 1955, 1977.CrossRefGoogle Scholar
  30. Castellano, E. and H.J. Schumacher, Die kinetik and der mechanismus des photochemischen ozonzerfalles im licht der wellenlange 313 nm, Z. Physik. Chem. Neue Folge, 65, 62, 1969.CrossRefGoogle Scholar
  31. Cess, R.D., Radiative transfer due to atmospheric water vapor: Global considerations of the earth’s energy balance, J. Quant. Spectrosc. Radiat. Transfer, 14, 861, 1974.CrossRefGoogle Scholar
  32. Cess, R.D., Climate change: An appraisal of atmospheric feedback mechanisms employing zonal climatology, J. Atm. Sci., 33, 1831, 1976.CrossRefGoogle Scholar
  33. Cess, R.D. and V. Ramanathan, Radiative transfer in the atmosphere of Mars and that of Venus above the cloud deck, J. Quant. Spectrose Radiat. Transfer, 12, 933–945, 1972.CrossRefGoogle Scholar
  34. Chandrasekhar, S., Radiative Transfer, Oxford University Press, Oxford, 1950 (Reprinted by Dover Publ, (New York), 1960).Google Scholar
  35. Chang, J.S., J.R. Barker, J.E. Davenprot and D.M. Golden, Chlorine nitrate photolysis by a new technique: Very low pressure photolysis, Chem. Phys. Letters, 60, 385, 1979.CrossRefGoogle Scholar
  36. Chapman, S., The absorption and dissociative or ionizing effect of monochromatic radiations in an atmosphere on a rotating earth, Proc. Phys. Soc., 43, 483, 1931.CrossRefGoogle Scholar
  37. Chou, C.C., W.S. Smith, H. Vera Ruiz, K. Moe, G. Crescentini, J.J. Molinar and F.S. Rowland, The temperature dependence of the ultraviolet absorption cross sections of CCl2F2 and CCl3F, and their stratospheric significance, J. Phys. Chem., 81, 1977.Google Scholar
  38. Chou, C.C., R.J. Milstein, W.S. Smith, H. Vera Ruiz, M.J. Molinar and F.S. Rowland, Stratospheric photodissociation of several saturated perhalo chlorofluorocarbon compounds in current technological use (Fluorocarbons -13, -113, -114 and -115), J. Phys. Chem., 82, 1, 1978.CrossRefGoogle Scholar
  39. Cieslik, S. and M. Nicolet, The aeronomic dissociation of nitric oxide, Planet. Space Sci., 21, 925, 1973.CrossRefGoogle Scholar
  40. Coulson, K.L., Solar and Terrestrial Radiation, Academic Press, (New York), 1975.Google Scholar
  41. Cox, R.A. and R.G. Derwent, The utlraviolet absorption spectrum of gaseous nitrous acid, J. Photochem., 6, 23, 1976.CrossRefGoogle Scholar
  42. Cox, R.A. and K. Patrick, Kinetics of the reaction HO2 + NO2 .→ (+M) HO2NO2 using molecular modulation spectrometry, Int. J. Chem. Kinetics, 11, 635, 1979.CrossRefGoogle Scholar
  43. Coxon, J.A., Vibrational numbering in the A2Π state of ClO, J. Photochem., 5, 337, 1976.CrossRefGoogle Scholar
  44. Coxon, J.A. and D.A. Ramsay, The A2Π-X2Π band system of ClO reinvestigation of the absorption spectrum, Canad. J. Phys., 54, 1034, 1976.CrossRefGoogle Scholar
  45. Coxon, J.A., RKR Franck-London factors and absorption cross-sections for rotational transitions in the A2Π - X2Π system of ClO, J. Photochem., 6, 439, 1977.CrossRefGoogle Scholar
  46. Crutzen, P., Comment on paper “Absorption and emission by carbon dioxide in the mesosphere”, by J.T. Houghton, Quart. J. Roy. Met. Soc., 96, 767, 1970.CrossRefGoogle Scholar
  47. Curtis, A.R., Discussion of a statistical model for water vapour absorption, Quart. J. Roy. Met. Soc., 78, 638, 1952.CrossRefGoogle Scholar
  48. Curtis, A.R. and R.M. Goody, Thermal radiation in the upper atmosphere, Proc. Roy. Soc., A236, 193, 1956.Google Scholar
  49. Dalmon, R., Recherches sur l’acide nitrique et ses solutions par les spectres d’absorption dans l’ultraviolet, Memoires des services de L’etat, Paris, 30, 141, 1943.Google Scholar
  50. Daumont, D., J. Brion and J. Malicet, Measurement of total atmospheric ozone: Consequences entailed by new values of O3 absorption cross sections at 223 K in the 310–350 nm spectral range, Planet. Space Sci., 31, 1229, 1983.CrossRefGoogle Scholar
  51. Davenport, J.E., Determination of NO2 photolysis parameters for stratospheric modeling, Report No. FAA-EQ-78-14, 1978.Google Scholar
  52. De More, W.B. and M. Patapoff, Temperature and pressure dependence of CO2 extinction coefficients, J. Geophys. Res., 77, 6291, 1972.CrossRefGoogle Scholar
  53. De More, W.B. and O.F. Raper, Reaction of O(1D) with nitrogen, J. Chem. Phys., 37, 2048, 1962.CrossRefGoogle Scholar
  54. De More, W.B. and O.F. Raper, Primary processes in ozone photolysis, J. Chem. Phys., 44, 1780, 1966.CrossRefGoogle Scholar
  55. Dickinson, R.E., Method of parameterization for infrared cooling between the altitudes of 30 and 70 km, J. Geophys. Res., 78, 4451, 1973.CrossRefGoogle Scholar
  56. Dobson, G.M.B., Observers Handbook for the Ozone Spectrophotometer, Ann. IGU, V, 46, Pergamon Press, New York, 1957.Google Scholar
  57. Donner, L. and V. Ramanathan, Methane and nitrous oxide: Their effects on the terrestrial climate, J. Atmos. Sci., 37, 119, 1980.CrossRefGoogle Scholar
  58. Dopplick, T.G., Radiative heating of the global atmosphere, J. Atmos. Sci., 29, 1278, 1972.CrossRefGoogle Scholar
  59. Ditchburn, R.W. and P.A. Young, the absorption of molecular oxygen between 1850 and 2500 A, J. Atm. Terr. Phys., 24, 127, 1962.CrossRefGoogle Scholar
  60. Duncan, A.B.F., The far ultraviolet absorption spectrum of N2O, J. Chem. Phys., 4, 638, 1936.CrossRefGoogle Scholar
  61. Edwards, D.K., Absorption of radiation by carbon monoxide gas according to the exponential wide-band model, Appl. Optics, 4, 1351, 1965.CrossRefGoogle Scholar
  62. Ellingson, R.G. and J.C. Gille, An infrared radiative transfer model, I. model description and comparison of observations with calculations, J. Atmos. Sci., 35, 523, 1978.CrossRefGoogle Scholar
  63. Ellis, J.S., Cloudiness: The planetary radiation budget and climate, Ph.D. Thesis, Dept. of Atmos. Sci., Colorado State Univ., Fort Collins.Google Scholar
  64. Elsasser, W.M., Heat transfer by infrared radiation in the atmosphere, Harvard Meteorological Studies, No. 6, Harvard Univ. Press, Cambridge, Mass., 1942.Google Scholar
  65. Elsasser, W.M., Mean absorption and equivalent absorption coefficient of a band spectrum, Phys. Rev., 54, 126, 1938.CrossRefGoogle Scholar
  66. Elterman, L., UV, visible and IR attenuation for altitudes to 50 km, AFCRL Report 68-0153, Environ. Res. Papers, Bedford, MA, 1968.Google Scholar
  67. Fairchild, C.E., E.J. Stone and G.M. Lawrence, Photofragment spectroscopy of ozone in the UV region 270–310 nm and 600 nm, J. Chem. Phys., 69, 3632, 1978.CrossRefGoogle Scholar
  68. Fang, T.M., S.C. Wofsy and A. Dalgarno, Capacity distribution functions and absorption in Schumann-Runge bands of molecular oxygen, Planet. Space Sci., 22, 413, 1974.CrossRefGoogle Scholar
  69. Fiocco, G., A. Mugnai and W. Forlizzi, Effects of radiation scattered by aerosols on the photodissociation of ozone, J. Atom. Terr. Phys., 40, 949 1978.CrossRefGoogle Scholar
  70. Frederick, J.E. and R. D. Hudson, Predissociation of nitric oxide in the mesosphere and stratosphere, J. Atmos. Sci., 36, 737–745, 1979.CrossRefGoogle Scholar
  71. Frederick, J.E., R.D. Hudson and J.E. Mentall, Stratospheric observations of the attenuated solar irradiance in the Schumann-Runge band absorption region of molecular oxygen, J. Geophys. Res., 86, 9885, 1981.CrossRefGoogle Scholar
  72. Frederick, JE. and J.E. Mentall, Solar irradiance in the stratosphere: Implication for the Herzberg continuum absorption of O2, Geophys. Res. Lett., 9, 461, 1982.CrossRefGoogle Scholar
  73. Frederick, J.E., R.B. Abrams and P.J. Crutzen, The delta band dissociation of nitric oxide: A potential mechanism for coupling thermospheric variations to the mesosphere and stratosphere, J. Geophys. Res., 88, 3829, 1983.CrossRefGoogle Scholar
  74. Frohlich, C., Contemporary measures of the solar constant, pp. 93–109, in: White, O.R. (ed.), The Solar Output and its Variation, University of Colorado Press, 1977.Google Scholar
  75. Froidevaux, L. and Y.L. Yung, Radiation and chemistry in the stratosphere: Sensitivity to O2 cross sections in the Herzberg continuum, Geophys. Res. Lett., 9, 854, 1982.CrossRefGoogle Scholar
  76. Ghazi, A.V., V. Ramanathan and R.E. Dickinson, Acceleration of upper stratospheric radiative damping: observational evidence, Geophys. Res. Lett., 6, 437, 1979.CrossRefGoogle Scholar
  77. Gibson, G.E. and N.S. Bayliss, Variation with temperature of the continuous absorption spectrum of diatomic molecules: Part I. Experimental absorption spectrum of chlorine, Phys. Rev., 44, 186, 1933.Google Scholar
  78. Gibson, G.E., O.K. Rice and N.S. Bayliss, Variation with temperature of the continuous absorption spectrum of diatomic molecules: Part II. Theoretical, Phys. Rev., 44, 193, 1933.CrossRefGoogle Scholar
  79. Godson, W.L., The evaluation of infrared radiative fluxes due to atmosphere water vapour, Quart. J. Roy. Met. Soc., 79, 367, 1953.CrossRefGoogle Scholar
  80. Goldstein, R. and F.N. Mastrup, Absorption coefficients of the O2 Schumann-Runge continuum from 1270 A to 1745 A using a new continuum source, 56, 765, 1966.Google Scholar
  81. Goodeve, C.F. and A.C.W. Taylor, The continuous absorption spectrum of hydrogen bromide, Proc. Roy. Soc., A152, 221, 1935.Google Scholar
  82. Goody, R.M., A statistical model for water-vapour absorption, Quart. J. Roy. Meteorol. Soc., 78, 165, 1952.CrossRefGoogle Scholar
  83. Goody, R.M., Atmospheric radiation, I. Theoretical Basis, Oxford at the Clarendon Press, 1964.Google Scholar
  84. Graham, R.A. and H.S. Johnston, The photochemistry of NO3 and the kinetics of the N2O5-O3 system, J. Phys. Chem., 82, 254, 1978.CrossRefGoogle Scholar
  85. Graham, R.A., A.M. Wier and J.A. Pitts, Ultraviolet and infrared cross section of gas phase HO2NO2, Geophys. Res. Lett., 5, 909, 1978.CrossRefGoogle Scholar
  86. Grant, I.P. and G.E. Hunt, Discrete space theory of radiative transfer, I. Fundamentals, Proc. Roy. Soc. London, A313, 183, 1969.Google Scholar
  87. Griggs, M., Absorption coefficients of ozone in the ultraviolet and visible regions, J. Chem. Phys., 49, 857, 1968.CrossRefGoogle Scholar
  88. Groves, K.S. and A.F. Tuck, Strospheric O3-CO2 coupling in a photochemical-radiative column moel, I. Without chlorine chemistry, Quart. J. Roy. Met. Soc., 106, 125, 1980.Google Scholar
  89. Hall, T.C. and F.E. Blacett, Separation of the absorption spectra of NO2 and N2O4 in the range of 2400–5000 A, J. Chem. Phys., 20, 1745, 1952.CrossRefGoogle Scholar
  90. Hansen, J.E., W.C. Wang and A.A. Lacis, Mount Agung eruption provides test of a global climatic perturbation, Science, 199, 1065, 1978.CrossRefGoogle Scholar
  91. Hansen, J., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell, Climate impact of increasing atmospheric carbon dioxide, Science, 213, 957, 1981.CrossRefGoogle Scholar
  92. Harker, A.B., N. Ho and J.J. Ratto, Photodissociation quantum yield of NO2 in the region 375 to 420 nm, Chem. Phys. Letters, 50, 394, 1977.CrossRefGoogle Scholar
  93. Hasson, V. and R.W. Nicholls, Absolute spectral absorption measurements on molecular oxygen from 2640–1920 A. II. Continuum measurements 2430–1920 A, J. Phys. B., 4, 1789, 1971.CrossRefGoogle Scholar
  94. Hearn, A.G., The absorption of ozone in the ultraviolet and visible region of the spectrum, Proc. Phys. Soc., 79, 932, 1961.CrossRefGoogle Scholar
  95. Heath, D.F. and M.P. Thekaekara, The solar spectrum between 1200 and 3000 A, in The Solar Output and Its Variations, Oran R. White, (ed.), Colorado Associated University Press, Boulder, Colorado, 193–212, 1979.Google Scholar
  96. Heath, D.F., A review of observational evidence for short and long term ultraviolet flux variability of the Sun, in Proceedings of the International Conference on Sun and Climate, Centre National D’Etudes Spatiales, p. 163, France, 1980.Google Scholar
  97. Henri, V. and S.A. Schou, Struktur und akitivierung der molekel des formaldehyds, eine analyse auf grund des ultrvioletten absorption-spektrums des dampfes, Zeit. Phys., 49, 774, 1928.CrossRefGoogle Scholar
  98. Hering, W.S., C.N. Touart and T.R. Borden, Ozone heating and radiative equilibrium in the lower stratosphere, J. Atmos. Sci., 29, 402, 1967.CrossRefGoogle Scholar
  99. Herman, J.R. and J.E. Mentall, The direct and scattered solar flux within the stratosphere, J. Geophys. Res., 87, 1319, 1982a.CrossRefGoogle Scholar
  100. Herman, J.R. and J.E. Mentall, O2 absorption cross section (187–225 nm) from stratospheric solar flux measurements, J. Geophys. Res. 87, 8967, 1982b.CrossRefGoogle Scholar
  101. Heroux, L. and R.A. Swirbalus, Full-disk solar fluxes between 1230 and 1940 A, J. Geophys. Res. 81, 436, 1976.CrossRefGoogle Scholar
  102. Herzberg, G., Ultraviolet absorption spectra of acetylene and formaldehyde, Trans. Faraday. Soc., 27, 378, 1931.CrossRefGoogle Scholar
  103. Herzberg, L., in Physics of the Earth’s upper atmosphere, Hines, C., I. Paghis, T. R. Hartz, and J. A. Fejer (eds.), Prentice Hall, (Englewood Cliffs, N. J.), 1965.Google Scholar
  104. Hinteregger, H.E., Solar UV irradiance at wavelengths below 185 nanometers observed for sunspot cycle 21, EGS, Uppsala, 1981.Google Scholar
  105. Holt, R.B., C.K. McLane and O. Oldenberg, Ultraviolet absorption spectrum of hydrogen peroxide, J. Chem. Phys., 16, 225–229, 1948. Erratum: J. Chem. Phys., 16, 638, 1948.CrossRefGoogle Scholar
  106. Holt, R.B. and O. Oldenberg, Role of hydrogen peroxide in the thermal combination of hydrogen and oxygen, J. Chem. Phys., 17, 1091, 1949.CrossRefGoogle Scholar
  107. Houghton, J.T., Absorption and emission by carbon dioxide in the mesosphere, Quart. J. Roy. Met. Soc., 95, 1, 1969.CrossRefGoogle Scholar
  108. Houghton, J.T., The Physics of Atmospheres, Cambridge University Press (Cambridge), 1977.Google Scholar
  109. Hudson, R.D., V.L. Carter and J.A. Stein, An investigation of the effect of temperature on the Schumann-Runge absorption continuum of oxygen, 1580–910 A, J. Geophys. Res., 71, 2295, 1966.Google Scholar
  110. Hudson, R.D. and V.L. Carter, Absorption of oxygen at elevated temperatures (300 to 900 K) in the Schumann-Runge system, J. Opt. Soc. Amer., 58, 1621, 1968.CrossRefGoogle Scholar
  111. Hudson, R.D., V.L. Carter and E.L. Breig, Predissociation in the Schumann-Runge band system of O2: Laboratory measurements and atmospheric effects, J. Geophys. Res., 74, 4079, 1969.CrossRefGoogle Scholar
  112. Hudson, R.D. and S.H. Mahle, Photodissociation rates of molecular oxygen in the mesosphere and lower thermosphere, J. Geophys. Res., 77, 2902, 1972.CrossRefGoogle Scholar
  113. Huffman, R.E., Y. Tanaka and J.C. Larrabee, Nitrogen and oxygen absorption cross sections in the vacuum ultraviolet, Disc. Faraday Soc., 37, 159, 1964.CrossRefGoogle Scholar
  114. Hummel, J.R. and W.R. Kuhn, An atmospheric radiative-convective moel with interactive water vapor transport and cloud development, Tellus, 33, 372, 1981.CrossRefGoogle Scholar
  115. Inn, E.C.Y. and Y. Tanaka, Absorption coefficient of ozone in the ultraviolet and visible regions, J. Opt. Soc. Amer., 43, 8760, 1953.Google Scholar
  116. Inn, E.C.Y., K. Watanabe and M. Zelikoff, Absorption coefficients of gases in the vacuum ultraviolet: 3. CO2, J. Chem. Phys., 21, 1648, 1953.CrossRefGoogle Scholar
  117. Inn, E.C.Y., Absorption coefficient of HCl in the region 1400 to 2200 A, J. Atmos. Sci., 32, 2375, 1975.CrossRefGoogle Scholar
  118. Iribarne, J. V., and H. R. Cho, Atmospheric Physics, D. Reidel Publishing Company, (Dordrecht, Holland), 1980.Google Scholar
  119. Isaksen, I.S.A., K.H. Modtbo, J. Sunde and P.J. Crutzen, A simplified method to include the molecular scattering and reflection calculations of photon fluxes and photodissociation rates, Geophys. Norv. 31, 11, 1977.Google Scholar
  120. Johnson, F.S., J.D. Porcell, R. Tousey and K. Watanabe, Direct measurements of the vertical distribution of atmospheric ozone to 70 km altitude, J. Geophys. Res., 57, 157, 1952.CrossRefGoogle Scholar
  121. Johnston, H.S., E.D. Morris, Jr and J. Van den Bogaerde, Molecular modulation kinetic spectrometry, ClOO and ClO radicals in the photolysis of chlorine in oxygen, J. Amer. Chem. Soc., 91, 7712–7727, 1969.CrossRefGoogle Scholar
  122. Johnston, H.S. and R.A. Graham, Gas-phase ultraviolet spectrum of nitric acid vapor, J. Chem. Phys., 77, 62, 1973.CrossRefGoogle Scholar
  123. Johnston, H.S. and R.A. Graham, Photochemistry of NOx compounds, Canad. J. Chem., 52, 1415, 1974.CrossRefGoogle Scholar
  124. Johnston, H.S. and G. Selwyn, New cross sections for the absorption of near ultraviolet radiation by nitrous oxide (N2O), Geophys. Res. Lett., 2, 549, 1975.CrossRefGoogle Scholar
  125. Jones, E.J. and O.R. Wulf, The absorption coefficient of nitrogen pentoxide in the ultraviolet and the visible absorption spectrum NO3, J. Chem. Phys., 5, 873, 1937.CrossRefGoogle Scholar
  126. Jones, I.T.N. and K.D. Bayes, Photolysis of nitrogen dioxide, J. Chem. Phys., 59, 4836, 1973.CrossRefGoogle Scholar
  127. Jones, I.T.N. and R.P. Wayne, The photolysis of ozone by ultraviolet radiation. V. Photochemical formation of O2 (1Δg), Proc. Roy. Soc. London, A321, 409, 1971.Google Scholar
  128. Jourdan, J.L., G. Le Bras, G. Poulet, J. Combourieu, P. Rigaud and B. Leroy, UV absorption spectrum of ClO (A2Π-X2Π) up to the (1-0) band, Chem. Phys. Letters, 57, 109, 1978.CrossRefGoogle Scholar
  129. Junge, C.E., Air Chemistry and Radioactivity, Academic Press (New York), 1963.Google Scholar
  130. Kajimoto, O. and R.J. Cvetanovic, Temperature dependence of O(1D) production in the photolysis of ozone at 313 nm, Chem. Phys. Letters, 37, 533, 1976.CrossRefGoogle Scholar
  131. Kiehl, J.T. and V. Ramanathan, CO2 radiative parameterization used in climate models: Comparison with narrow band moels and with laboratory data, J. Geophys. Res., 88, 5191, 1983.CrossRefGoogle Scholar
  132. Knauth, H.-D., H. Alberti and H. Clausen, Equilibrium constant of the gas reaction Cl2 + H2O ultraviolet spectrum of HOCl, J. Phys. Chem., 83, 1604, 1979.CrossRefGoogle Scholar
  133. Kockarts, G., Penetration of solar radiation in the Schumann-Runge bands of molecular oxygen in Mesopheric Models and Related Experiment, ed. G. Fiocco, Reidel Publ. Co. (Dordrecht, Holland), 160–176, 1971.Google Scholar
  134. Kockarts, G., Absorption and photodissociation in the Schumann-Runge bands of molecular oxygen in the terrestrial atmosphere, Planet. Space Sci., 24, 589, 1976.CrossRefGoogle Scholar
  135. Kondratyev, K.Y., Radiation in the Atmosphere, Academic Press (New York, N.Y.), 1969.Google Scholar
  136. Kourganoff, V., Basic Methods in Transfer Problems, Oxford University Press (London), 1952.Google Scholar
  137. Kuhn, W.R., and J. London, Infrared radiative cooling in the middle atmosphere (30–110 km), J. Atmos. Sci., 26, 189, 1969.CrossRefGoogle Scholar
  138. Kuis, S., R. Simonaitis and J. Heicklen, Temperature dependence of the photolysis of ozone at 3130 A, J. Geophys. Res., 80, 1328, 1975.CrossRefGoogle Scholar
  139. Lacis, A.A. and J.E. Hansen, A parameterization for the absorption of solar radiation in the Earth’s atmosphere, J. Atmos. Sci., 31, 118, 1974.CrossRefGoogle Scholar
  140. Lambrey, M. and D. Chalonge, Structure de la bande ultraviolette de l’ozone, Gerl. Beitr. Geophys., 24, 42, 1929.Google Scholar
  141. Langhoff, J.R., J.P. Dix, J.O. Arnold, R.W. Nicholls and L.L. Danylewych, Theoretical intensity parameters for the vibration-rotation bands of ClO, J. Chem. Phys., 67, 4306, 1977.CrossRefGoogle Scholar
  142. Langhoff, S.R., R.L. Jaffe and J.O. Arnold, Effective cross sections and rate constants for predissociation of ClO in the earth’s atmosphere, J. Quant. Spectrosc. Rad. Transfer, 18, 227, 1977.CrossRefGoogle Scholar
  143. Lean, J.L. and A.J. Blake, The effect of temperature on thermospheric molecular oxygen absorption in the Schumann-Runge continuum, J. Geophys. Res., 86, 211, 1981.CrossRefGoogle Scholar
  144. Lean, J.L., O.R. White, W.C. Livingston, D.F. Heath, R.F. Donnelly and A. Skumanisch, A three-component model of the variability of the solar ultraviolet flux: 145–200 nm, J. Geophys. Res., 87, 1037, 1982.Google Scholar
  145. Laufer, A.M. and J.R. Mcnesby, Deuterium isotope effect in vacuum ultraviolet absorption coefficients of water and methane, Canad. J. Chem., 43, 3487, 1965.CrossRefGoogle Scholar
  146. Leifson, S.W., Absorption spectra of some gases and vapors in the Schumann region, Astrophys. J., 63, 73, 1926.CrossRefGoogle Scholar
  147. Lenoble, J., Standard procedures to compute atmospheric radiative transfer in a scattering atmosphere, I.A.M.A.P., National Center for Atmospheric Research, Boulder, Colorado 80307, USA, 1977.Google Scholar
  148. Lenoble, J., Transfert radiatif, in Physique Moleculaire — Physique de L’Atmosphere, C. Camy-Peyret (ed.), Editions du CNRS, Paris, 1982.Google Scholar
  149. Lin, C.-L. and W.B. Demore, O(1D) production in ozone photolysis near 3100 A, J. Photochem., 2, 161–164, 1973.CrossRefGoogle Scholar
  150. Lin, C.L., N.K. Rohatgi and W.B. Demore, Ultraviolet absorption cross sections of hydrogen peroxide, Geophys. Res. Letters, 5, 113, 1978.CrossRefGoogle Scholar
  151. Liou, K-N., An Introduction to Atmospheric Radiation, Academic Press (New York, N.Y.), 1980.Google Scholar
  152. Liou, K-N. and S-C.S. Ou, Theory of equilibrium temperatures in radiative turbulent atmospheres, J. Atmos. Sci., 40, 214, 1983.CrossRefGoogle Scholar
  153. London, J., In Proceedings of the Nato Advanced Institute on Atmospheric Ozone (Portugal), U.S. Dept. of Transportation, FAA — Washington, D.C., USA — No. FAA-EE-80-20, 1980.Google Scholar
  154. Luther, F.M. and R.J. Gelinas, Effect of molecular multiple scattering and surface albedo on atmosphere photodissociation rates, J. Geophys. Res., 81, 1125, 1976.CrossRefGoogle Scholar
  155. Luther, F.M., D.J. Wuebbels, W.H. Duewer and J.C. Chang, Effect of multiple scattering on species concentrations and model sensitivity, J. Geophys. Res., 83, 3563, 1978.CrossRefGoogle Scholar
  156. Magnotta, F. and H.S. Johnston, Photodissociation quantum yields for the NO3 free radical, Geophys. Res. Letters, 7, 769, 1980.CrossRefGoogle Scholar
  157. Malkmus, W., Random Lorentz band model with exponential-tailed S-1 line intensity distribution function, J. Opt. Soc. Amer., 57, 323–329, 1967.CrossRefGoogle Scholar
  158. Manabe, S. and F. Moller, On the radiative equilibrium and heat balance of the atmosphere: Mon. Weath. Rev., 89, 503, 1961.CrossRefGoogle Scholar
  159. Manabe, S. and R.F. Strickler, Thermal equilibrium of the atmosphere with a convective adjustment, J. Atmos. Sci., 21, 361, 1964.CrossRefGoogle Scholar
  160. Manabe, S. and R.T. Wetherald, Thermal equilibrium of the atmosphere with a given distribution of relative humidity, J. Atmos. Sci., 24, 241, 1967.CrossRefGoogle Scholar
  161. Mandelman, M. and R.W. Nicholls, The absorption cross sections and F-values for the v*=0 progression of bands and associated continuum for the ClO (A2Π-X2Π) system, J. Quant. Spectrosc. Rad. Transfer, 17, 481, 1977.Google Scholar
  162. Marmo, F.F., Absorption coefficients of nitrogen oxide in the vacuum ultraviolet, J. Opt. Soc. Amer., 43, 1186, 1953.CrossRefGoogle Scholar
  163. Martin, H. and R. Gareis, Die kinetik der reaktion von ClO2 mit NO2 in der loesungsphase, Zeit. Elektrochem., 60, 959, 1956.Google Scholar
  164. McCartney, E.J., Optics of the Atmosphere: Scattering by Molecules and Particles, Wiley (New York, N.Y.), 1976.Google Scholar
  165. McClatchey, R.A., et al., Optical properties of the atmosphere, 3rd ed., AFCRL-72-0497, Air Force Cambridge Research Labs, Bedford, Mass., 1972.Google Scholar
  166. McClatchey, R.S., R.W. Fenn, J.E.A. Selby, F.E. Volz and J.S. Garing, Optical properties of the atmosphere, AFCRL-71-0279, Air Force Cambridge Research Laboratories, 85 pp., Cambridge, MA, 1973.Google Scholar
  167. Meier, R.R., D.E. Anderson, Jr., and M. Nicolet, Radiation field in the troposphere and stratosphere from 240 to 1000 nm — I. General analysis, Planet. Space Sci., 30, 923, 1982.CrossRefGoogle Scholar
  168. Metzger, P.H. and G.R. Cook, A reinvestigation of the absorption cross sectiosn of molecular oxygen in the 1050–1800 A region, J. Quant. Spectros. Rad. Trans., 4, 107, 1964.CrossRefGoogle Scholar
  169. Mie, G., Beitrage zur optik trueber Medien, Speziell koloidaller metaloesungen, Ann. der Phys., 25, 377, 1908.CrossRefGoogle Scholar
  170. Miescher, E., Rotationsanalyse der NO+ banden, Helv. Phys. Acata, 29, 135, 1956a.Google Scholar
  171. Miescher, E., Rotationanalyse der B’-banden (2Δ-X2Π) des NO-molekuls, Helv. Phys. Acta, 29, 401 1956b.Google Scholar
  172. Miescher, E., Excited NO levels, J. Opt. Soc. Amer., 49, 1130, 1959.Google Scholar
  173. Miescher, E., Spectrum and energy levels of the NO molecule, J. Quant. Spectros. Rad. Trans., 2, 421, 1962.CrossRefGoogle Scholar
  174. Miescher, E., Analysis of the spectrum of nitric oxide molecule, Report AFCRL-69-0268, 1968.Google Scholar
  175. Miescher, E., The fine structure of the spectrum of the electronic NO laser, J. Mol. Spec., 53, 302, 1974.CrossRefGoogle Scholar
  176. Milne, E.A., Handbuch der Astrophysik, 3, Part I, 1930 (Reprinted in “Selected Papers on the Transfer of Radiation”, Dover, 1966).Google Scholar
  177. Mitchell, A.C.G. and W.M. Zemansky, Resonance Radiation and Excited Atoms, Harvard Univ. Press, Cambridge, MA, 1934 (Reprinted 1961).Google Scholar
  178. Molina, L.T., S.D. Schinke and M.J. Molina, Ultraviolet absorption spectrum of hydrogen peroxide vapor, Geophys. Res. Letters, 4, 580, 1977.CrossRefGoogle Scholar
  179. Molina, L.T. and M.J. Molina, Ultraviolet spectrum of HOCl, J. Phys. Chem., 42, 2410, 1978.CrossRefGoogle Scholar
  180. Molina, L.T. and M.J. Molina, Chlorine nitrate ultraviolet absorption spectrum at stratospheric temperatures, J. Photochem., 11, 139–144, 1979.CrossRefGoogle Scholar
  181. Molina, L.T. and M.J. Molina, J. Photochem., 15, 97, 1981.CrossRefGoogle Scholar
  182. Moortgat, G.K., E. Kudszus and P. Warneck, Temperature dependence of O(1D) formation in the near UV photolysis of ozone, J. Chem. Soc., Faraday Trans 11, 73, 1216, 1977.Google Scholar
  183. Moortgat, G.K. and P. Warneck, Relative O(1D) quantum yields in the near UV photolysis of ozone at 298 K, Naturforsch., 30A, 835, 1975.Google Scholar
  184. Moortgat, G.K. and P. Warneck, CO and H2 quantum yields in the photo-decomposition of formaldehyde in air, J. Chem. Phys., 70, 3639, 1979.CrossRefGoogle Scholar
  185. Mount, G.H., G.J. Rottman, and J.G. Thimothy, The solar spectral irradiance 1200–2550 A at solar maximum, J. Geophys. Res., 85, 4271, 1980.CrossRefGoogle Scholar
  186. Mount, G.H. and G.J. Rottman, The solar spectral irradiance 1200–1284 A near solar maximum: July 15, 1980, J. Geophys. Res., 86, 9193, 1981.CrossRefGoogle Scholar
  187. Mount, G.H. and G.J. Rottman, The solar absolute spectral irradiance 1150–3173 A: 17 May 1982, J. Geophys. Res., 88, 5403, 1983.CrossRefGoogle Scholar
  188. Murgatroyd, R.J. and R.M. Goody, Sources and sinks of radiative energy from 30 to 90 km, Quart. J. Roy. Met. Soc., 84, 225, 1958.CrossRefGoogle Scholar
  189. Nakayamat, T., M.Y. Kitamura and K. Watanabe, Ionization potential and absorption coefficients of nitrogen dioxide, J. Chem. Phys., 30, 1180, 1959.CrossRefGoogle Scholar
  190. Neckel, H. and D. Labs, Improved data of solar spectral irradiance from 0.33 to 1.25 microns, Solar Phys., 74, 231, 1981.CrossRefGoogle Scholar
  191. Nicolet, M., Photodissociation of nitric oxide in the mesosphere and stratosphere: Simplified numerical relations for atmosphere model calculation, Geophys. Res. Letters, 6, 866, 1979.CrossRefGoogle Scholar
  192. Nicolet, M., The chemical equations of stratospheric and mesopheric ozone, Proceedings of Nato Advanced Study Institute on Atmospheric Ozone (Portugal), edited by US Dept. of Transportation, FAA Washington, D.C., USA, Rapport No. FAA-EE-80-20, 1980.Google Scholar
  193. Nicolet, M. and S. Cieslik, The photodissociation of nitric oxide in the mesophere and stratosphere, Planet. Space Sci., 28, 105, 1980.CrossRefGoogle Scholar
  194. Nicolet, M. and W. Peetermans, Atmospheric absorption in the O2 Schumann-Runge band spectral range and photodissociation rates in the stratosphere and mesophere, Planet. Space Sci., 28, 85, 1980.CrossRefGoogle Scholar
  195. Nicolet, M., The photodissociation of water vapor in the mesophere, J. Geophys. Res., 86, 5203, 1981.CrossRefGoogle Scholar
  196. Nicolet, M., R.R. Meier, and D.E. Anderson, Radiation field in the troposphere and stratosphere — II. Numerical analysis, Planet. Space Sci., 30 935, 1982.CrossRefGoogle Scholar
  197. Nicolet, M., Photodissociation of molecular oxygen in the terrestrial atmosphere: Simplifeid numerical relatiosn for the spectral range of the Schumann-Runge bands, J. Geophys. Res., in press, 1984.Google Scholar
  198. Norrish, R.G.W. and F.N. Kirkbride, Primary photochemical processes, Part I. The decomposition of formaldehyde, J. Chem. Soc., pp. 1518–1530, 1932.Google Scholar
  199. Ogawa, M., Absorption cross sections of O2 and CO2 continua in the Schumann-Runge and far-UV regions, J. Chem. Phys. Letters, 9, 603, 1971.CrossRefGoogle Scholar
  200. Ogawa, S. and M. Ogawa, Absorption cross section of O2 (A1Δg) and O2(X3Δg) in the region from 1087 to 1700 A., Canad. J. Phys., 53, 1845, 1975.CrossRefGoogle Scholar
  201. Owens, A.J., C.H. Hales, D.L. Filkin, C. Miller, A. Yokozeki, J.M. Steed and J.P. Jesson, A coupled one-dimensional radiative-convective chemistry — transport moel of the atmosphere, I. Model structure and steady state perturbation calculations, manuscript,Google Scholar
  202. Park, J.H., The equivalent mean absorption cross sections for the O2 Schumann-Runge bands: Aplication to the H2O and NO photodissociation rates, J. Atmos. Sci., 312, 1893, 1974.CrossRefGoogle Scholar
  203. Penndorf, R., Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 µm and their application to atmospheric optics, J. Opt. Soc. Am., 47, 176, 1957.CrossRefGoogle Scholar
  204. Perner, D., and U. Platt, Absorption of light in the atmosphere by collision pairs of oxygen (O2)2, Geophys. Res. Lett., 7, 1053, 1980.CrossRefGoogle Scholar
  205. Ramanathan, V., Radiative transfer within the Earth’s troposphere and stratosphere: A simplified radiative-convective model, J. Atmos. Sci., 33, 1330, 1976.CrossRefGoogle Scholar
  206. Ramanathan, V. and J.A. Coakley, Climate modeling through radiative convective models, Rev. Geophys. Space Phys., 16, 465, 1978.CrossRefGoogle Scholar
  207. Ramanathan, V., E.J. Pitcher, R.C. Malone and M.L. Blackmon, The response of a spectral general circulation model refinements in radiative processes, J. Atmos. Sci., 40, 605, 1983.CrossRefGoogle Scholar
  208. Rasool, S.I. and S.H. Schneider, Atmospheric carbon dioxide and aerosols effects of large increases on global climate, Science, 173, 138, 1971.CrossRefGoogle Scholar
  209. Richards, P.G., D.G. Torr, and M.A. Torr, Photodissociation of N2: A significant source for thermospheric atomic nitrogen, J. Geophys. Res., 86, 1495, 1981.CrossRefGoogle Scholar
  210. Robbins, D.E., Photodissociation of methyl chloride and methyl bromide in the atmosphere, Geophys. Res. Letters, 3, 213, 1976a, and Erratum: Ibid, 757, 1976b.CrossRefGoogle Scholar
  211. Rodgers, C.D. and C.D. Walshaw, The computation of infra-red cooling rate in planetary atmospheres, Quart. J. Roy. Met. Soc., 92, 67, 1966.CrossRefGoogle Scholar
  212. Romand, J. and B. Vodar, Spectre d’absorption de la’acide chlorhydrique gazeux dans la region de Schumann, C.R. Acad. Sci. Paris, 226, 238, 1948.Google Scholar
  213. Romand, J., Absorption ultraviolette dans la region of Schumann-Runge, Etude de ClH, BrH et IH gazeux, Ann. Phys., Paris, 4, 527, 1949.Google Scholar
  214. Romand, J. and Mayence, J., Spectre d’absorption de l’oxyde azoteux gazeux dans la region de Schumann, C.R. Acad. Sci. Paris, 228, 998, 1949.Google Scholar
  215. Rothman, L.S., A. Goldman, J.R. Gillis, R.H. Tipping, L.R. Brown, J.S. Margolis, A.G. Maki and L.D.G. Young, AFGL trace gas compilation: 1980 version, Appl. Opt., 20, 1323, 1980.CrossRefGoogle Scholar
  216. Rottman, G., Personal communication, 1981.Google Scholar
  217. Rottman, G., C. Barth, R. Thomas, G. Mount, G. Lawrence, D. Rusch, R. Saunders, G. Thomas and J. London, Solar spectral irradiance, 120 to 190 nm, October 13, 1981 – January 3, 1982, Geophys. Res. Letters, 9, 587, 1982.CrossRefGoogle Scholar
  218. Rottman, G.J., 27-day variations observed in solar ultraviolet (120–300 nm) irradiance, Planet. Space Sci., 31, 1001, 1983.CrossRefGoogle Scholar
  219. Rowland, F.S., and M.J. Molina, Chlorofluoromethanes in the enviornment, Rev. Geophys. Space Phys., 13, 1, 1975.CrossRefGoogle Scholar
  220. Rowland, F.S., J.E. Spencer and M.J. Molina, Stratospheric formation and photolysis of chlorine nitrate, J. Phys. Chem., 80, 2711, 1976.CrossRefGoogle Scholar
  221. Samain, D. and P.C. Simon, Solar flux determination in the spectral range 150–210 rim, Solar Phys., 49, 33, 1976.CrossRefGoogle Scholar
  222. Schoeberl, M.R. and D.F. Strobel, The zonally averaged circulation of the middle atmosphere, J. Atmos. Sci., 35, 577, 1978.CrossRefGoogle Scholar
  223. Schurgers, M. and K.H. Welge, Absorptionskoeffizient von H2O2 und N2H4 zwischen 1200 und 2000 A, Zeit. Naturforsch., 23A, 1508, 1968.Google Scholar
  224. Seery, D.J. and D. Britton, The continuous absorption spectra of chlorine, bromine, bromide chloride, iodine chloride and iodine bromide, J. Phys. Chem., 68, 2263, 1964.CrossRefGoogle Scholar
  225. Shardanand, and A.D. Prasad-Rao, Collision-induced absorption of O2 in the Herzberg continuum, J. Quant. Spectrosc. Radiat. Transfer, 17, 443, 1977.CrossRefGoogle Scholar
  226. Shaw, J., Solar Radiation, Ohio Journal of Science, LIII, 258, 1953.Google Scholar
  227. Shemansky, D.E., CO2 extinction coefficient 1700–3000 A, J. Chem. Phys., 56, 1582, 1972.CrossRefGoogle Scholar
  228. Simon, P.C., Solar irradiance between 120 and 400 nm and its variations, Solar Phys., 74, 273, 1982.CrossRefGoogle Scholar
  229. Simon, P.C., R. Pastiels and D. Nevejans, Balloon observations of solar ultraviolet irradiance at solar minimum, Planet. Space Sci., 30, 67, 1982a.CrossRefGoogle Scholar
  230. Simon, P.C., R. Pastiels, D. Nevejans and D. Gillotay, Balloon observatiosn of solar ultraviolet irradiance during solar cycle 21, in Proceedings of the Symposium on the Solar Constant and the Spectral Distribution of Solar Irradiance (J. London and C. Frohlich, ed.), p. 95, IAMAP, Third Scientific Assembly, Boulder, CO, USA, 1982b.Google Scholar
  231. Simonaitis, R., S. Braslaysky, J. Heicklen and M. Nicolet, Photolysis of O3 at 3130 A, Chem. Phys. Lett., 19, 601, 1973.CrossRefGoogle Scholar
  232. Simons, J.W., R.J. Paur, H.A. Webster, III and E.J. Bair, Ozone ultraviolet photolysis, IV. The ultraviolet spectrum, J. Chem. Phys., 59, 1203, 1973.CrossRefGoogle Scholar
  233. Simpson, C.J.S.M., P.D. Gait and J.M. Simmie, The vibrational deactivation of the bending moe of CO2 by O2 and by N2, Chem. Phys. Lett., 47, 133, 1977.CrossRefGoogle Scholar
  234. Smith, E.V.P. and D.M. Gottlieb, Solar flux and its variations, Space Sci. Rev., 16, 771, 1974.Google Scholar
  235. Smith, W.S., C.C. Chou and F.S. Rowland, The mechanism for ultraviolet photolysis of gaseous chlorine nitrate at 302.5 nm, Geophys. Res. Letters, 4, 517, 1977.CrossRefGoogle Scholar
  236. Sobolev. V.V., A Treatise of Radiative Transfer, D. Van Nostrand (Princeton, N.J.), 1963.Google Scholar
  237. Spencer. J.E. and F.S. Rowland, Bromine nitrate and its stratospheric significance, J. Phys. Chem., 82, 7, 1978.CrossRefGoogle Scholar
  238. Stockwell, W.R. and J.C. Calvert, The near ultraviolet absorption spectrum of gaseous HONO and N2O4, J. Photochem., 8, 193, 1978.CrossRefGoogle Scholar
  239. Stolarski, R.S. and R.J. Cicerone, Stratospheric chlorine, A possible sink for ozone, Can. J. Chem., 52, 1610, 1974.CrossRefGoogle Scholar
  240. Stone, P. and J. Carlson, Atmospheric lapse rate regimes and their parameterization, J. Atmos. Sci., 36, 415, 1976.CrossRefGoogle Scholar
  241. Swider, W. and M.E. Gardner, On the accuracy of certain approximations for the Chapman function, Environmental Research Papers No. 272, Air Force Cambridge Research, Bedford, MA, USA, 1967.Google Scholar
  242. Sze, N.D. and M.K.W. Ko, The effects of the rate for OH + HNO3 and HO2NO2 photolysis on stratospheric chemistry, Atmos. Environm., 15, 1301, 1981.CrossRefGoogle Scholar
  243. Tanaka, Y., E.C.Y. Inn and K. Watanabe, Absorption coefficients of gases in the vacuum ultraviolet, Part IV. Ozone, J. Chem. Phys., 21, 1651, 1953.CrossRefGoogle Scholar
  244. Taube, H., Photochemical reactions of ozone in solution, Trans. Faraday Soc., 53, 657, 1957.CrossRefGoogle Scholar
  245. Thompson, B.A., P. Harteck and R.R. Reeves, Jr., Ultraviolet absorption coefficients of CO2 CO, O2, H20, N2O, NH3, NO, SO2 and CH4 between 1850 and 4000 A, J. Geophys. Res., 68, 6431, 1963.Google Scholar
  246. Tiwari, S.N., Models for infrared atmospheric radiation, Adv. Geophys., 20, 1, 1978.CrossRefGoogle Scholar
  247. Turco, R.P., R.C. Whitten, O.B. Toon, E.C.Y. Inn and P. Hamil, Stratospheric hydroxyl radical concentrations: New limitations suggested by observations of gaseous and paticulate sulfur, J. Geophys. Res., 86, 1129, 1981.CrossRefGoogle Scholar
  248. Urey, H.C., L.C. Dawsey and F.O. Rice, The absorption spectrum and decomposition of hydrogen peroxide by light, J. Amer. Chem. Cos., 51, 1371, 1929.CrossRefGoogle Scholar
  249. Valley, S.L. (ed.), Handbook of Geophysics and Space Environment, Air Force Cambridge Research Laboratory, 1965.Google Scholar
  250. Van de Hulst, H.C. Light Scattering by Small Particles, Wiley, (New York), 1957.Google Scholar
  251. Van Laethem-Meuree, N., J. Wisemberg and P.C. Simon, Absorption des chloromethanes dans l’ultraviolet: Mesures des sections efficaces d’absorption en fonction de la temperature, Bull. Acad. Roy. Belgique, Cl. Sci., 64, 34, 1978a.Google Scholar
  252. Van Laethem-Meuree, N., J. Wisemberg and P.C. Simon, Influence de la temperature sur les sections efficaces d’absorption des chlorofluorornethanes dans l’ultraviolet, Bull. Acad. Roy. Belgique, Cl. S i., 64, 42, 1978b.Google Scholar
  253. Vernazza, J., E. H. Avrett, and R. Loeser, Structure of the solar chromosphere. II. The underlying photosphere and temperature minimum region, Astrophys. J., 30, 1, 1976.CrossRefGoogle Scholar
  254. Vidal-Madjar, A., The solar spectrum at Lyman Alpha, in the Solar Output and its Variation (edited by 0. White), p. 2313, Colorado Associated University Press, Boulder, Colorado, USA, 1977.Google Scholar
  255. Vigroux, E., Mesures absolues des coefficients d’absorption de l’ozone dans la region des bandes de Huggins, A 18 degres, C.R. Acad. Sci. Paris, 234, 2351, 1952a.Google Scholar
  256. Vigroux, E., Absorption de l’ozone dans la region des bandes de Huggins, influence de la temperature, C.R. Acad. Sci. Paris, 234, 2439, 1952b.Google Scholar
  257. Vigroux, E., Contribution experimentale de]’absorption de l’ozone, Ann. Phys., Paris, 12eme Serie, 8, 709, 1953.Google Scholar
  258. Vigroux, E. Coefficients d’absorption de l’ozone dans la bande de Hartley, Ann. Geophys., 25, 169, 1969.Google Scholar
  259. Vodar, M.B., Spectre d’absorption ultraviolet du gaz chlorhydrique et courbe d’energie potentielle de l’etat excite de la molecule ClH, J. Phys. Rad., 9, 166, 1948.CrossRefGoogle Scholar
  260. Wang, W.C., W.B. Rossow, M.S. YaO and M. Wolfson, Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback, J. Atmos. Sci., 38, 1167, 1981.CrossRefGoogle Scholar
  261. Wang, W.C. and P.H. Stone, Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model, J. Atmos. Sci., 37, 545, 1980.CrossRefGoogle Scholar
  262. Watanabe, K. and F.F. Marmo, Photoionization and total absorption cross section of gases, II. O2 and N2 in the region 850–1500 A, J. Chem. Phys., 25, 965, 1956.CrossRefGoogle Scholar
  263. Watanabe, K. and M. Zelikoff, Absorption coefficient of water vapor in the vacuum ultraviolet, J. Opt. Soc. Amer., 43, 753, 1953.CrossRefGoogle Scholar
  264. Watanabe, K., E.C. Inn and M. Zelikoff, Absorption coefficients of oxygen in the vacuum ultraviolet, J. Chem. Phys., 21, 1026, 1953.CrossRefGoogle Scholar
  265. Watson, R.T., Rate constants for reactions of ClO of atmospheric interest, J. Phys. Chem. Ref. Data, 6, 871, 1977.CrossRefGoogle Scholar
  266. Williams, A.P., Relaxation of the 2.7 micron and 4.3 micron bands of carbon dioxide, in Mesospheric models and related Experiments, Reidel Publishing Company, 177, 1971.Google Scholar
  267. Williams, A.P. and C.D. Rodgers, Radiative transfer by the 15 miron CO2 band in the mesophere, Proceedings of the International Radiation Symposium, Sendai, Japan, 253–260, 26 May–2 June 1972.Google Scholar
  268. Wiscombe, W.J., Extension of the doubling method to inhomogeneous sources, J. Quant. Spectrosc. Radiat. Transfer, 16, 477, 1976a.CrossRefGoogle Scholar
  269. Wiscombe, W.J., On initialization, error and flux conservation in the doubling method, J. Quant. Spectrosc. Radiat. Transfer, 16, 637, 1976bCrossRefGoogle Scholar
  270. WMO (World Meteorological Organization), The stratosphere 1981: theory and measurements, Report no. 11, Geneva, Switzerland, 1982.Google Scholar
  271. Wyatt, P.J., V.R. Stull and G.N. Plass, Quasi-random model of band absorption, J. Opt. Soc. Amer., 52, 1209, 1962.CrossRefGoogle Scholar
  272. Yao, F., I. Wilson and H. Johnston, Temperature dependent ultraviolet absorption spectrum for dinitrogen pentoxide, J. Phys. Chem., 86, 3611, 1982.CrossRefGoogle Scholar
  273. Zeilik, M., Astronomy: the evolving universe, Prentice Hall, (Englewood Cliffs, New Jersey), 1965.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1986

Authors and Affiliations

  1. 1.Institut d’Aéronomie Spatiale and Université Libre de BruxellesBrusselsBelgium
  2. 2.Aeronomy LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations