Advertisement

Structure and Dynamics

Chapter
  • 116 Downloads
Part of the Atmospheric Sciences Library book series (volume 5)

Abstract

The distributions of most chemical species in the middle atmosphere result from the influences of both dynamical and chemical processes. In particular, when the rates of formation and destruction of a chemical species are comparable to the rate at which it is transported by physical processes, then transport can play a major role in determining the constituent distribution (a detailed discussion of these concepts is provided in §3.4). This transport can be produced both by the prevailing winds (also called advection) and by turbulent mixing (diffusion). These will each be discussed in more detail below. In turn, the distributions of certain photochemical species, particularly ozone, can influence the radiative budget, affecting temperatures and the dynamic flow patterns. Therefore the study of aeronomy intersects greatly with those of fluid dynamics and meteorology. If we wish to understand why photochemical species behave as observed, certain concepts from these disciplines must be explored. In this chapter, the general structure of the middle atmosphere will be discussed, and then the transport processes of the stratosphere and mesosphere will be described. In our description of atmospheric motions, we have not sought to provide even a partial account of the dynamic meteorology of the middle atmosphere. The reader is referred to the monograph by Holton (1975) for a detailed treatment of observations and theory.

Keywords

Gravity Wave Zonal Wind Potential Vorticity Planetary Wave Meridional Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M., Y. L. Yung, and J. W. Waters, Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere (50–120 km), J. Geophys. Res., 86, 3617, 1981.CrossRefGoogle Scholar
  2. Andrews, D. G., and M. E. McIntyre, Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the zonal mean acceleration, J. Atmos. Sci., 33, 2031, 1976.CrossRefGoogle Scholar
  3. Berggren, R., and K. Labitzke, The distribution of ozone on pressure surfaces, Tellus, 20, 88, 1968.CrossRefGoogle Scholar
  4. Boyd, J., The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationship of eddy fluxes of energy, heat, and momentum, J. Atmos. Sci., 33, 2285, 1976.CrossRefGoogle Scholar
  5. Brewer, A. W., Evidence for a world circulation provided by measurements of helium and water vapor distribution in the stratosphere, Q. J. Roy. Met. Soc., 75, 351, 1949.CrossRefGoogle Scholar
  6. Campbell, I. M., Energy and the atmosphere, John Wiley and Sons, (Chichester, G. B.), 1977.Google Scholar
  7. Chang, J. S., A. C. Hindmarsh, and N. K. Madsen, Simulation of chemical kinetics transport in the stratosphere, in Stiff differential systems, R. A. Willoughby, ed., Plenum, (New York), 1974.Google Scholar
  8. Chang, J. S., in Halocarbons: Effects on stratospheric ozone, National Academy of Sciences Report, Washington, D. C., 1976.Google Scholar
  9. Crutzen, P. J., Estimates of possible variations in total ozone due to natural causes and human activity, Ambio, 3, 201, 1974.Google Scholar
  10. Crutzen, P. J., A two-dimensional photochemical model of the atmosphere below 55 km: estimates of natural and man-caused perturbations due to NOx, in Proc. Fourth Conf. on CIAP, DOT-TSC-OST-38, 1975.Google Scholar
  11. Cunnold, D. M., F. Alyea, N. Phillips, and R. G. Prinn, A three-dimensional dynamical-chemical model of atmospheric ozone, J. Atmos. Sci., 32, 170, 1975.CrossRefGoogle Scholar
  12. Cunnold, D. M., F. N. Alyea, and R. G. Prinn, Preliminary calculations concerning the maintenance of the zonal mean ozone distribution in the northern hemisphere, Pure Appl. Geophys., 118, 329, 1980.CrossRefGoogle Scholar
  13. Danielsen, E. F., Trajectories: Isobaric, isentropic, and actual, J. Met., 18, 479, 1961.CrossRefGoogle Scholar
  14. DeMazure, M., and J. Saissac, Generalisation de l’equation classique de diffusion, Note de l’etablissement d’etudes et de recherches meteorologiques, no. 115, Paris, 1962.Google Scholar
  15. Dobson, G. M. G., Origin and distribution of polyatomic molecules in the atmosphere, Proc. Roy. Soc. Lond. A, 236, 187, 1956.CrossRefGoogle Scholar
  16. Dunkerton, T., On the mean meridional mass motions of the stratosphere and mesosphere, J. Atmos. Sci., 35, 2325, 1978.CrossRefGoogle Scholar
  17. Dunkerton, T., C. P. F. Hsu, and M. E. McIntyre, Some Eulerian and Lagrangian diagnostics for a model stratospheric warming, J. Atmos. Sci., 38, 819, 1981.CrossRefGoogle Scholar
  18. Ebel, A., Eddy diffusion models for the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 42, 617, 1980.CrossRefGoogle Scholar
  19. Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response, J. Atmos. Sci., 37, 2265, 1980.CrossRefGoogle Scholar
  20. Garcia, R. R., and D. L. Hartmann, The role of planetary waves in the maintenance of the zonally averaged ozone distribution of the upper stratosphere, J. Atmos. Sci., 37, 2248, 1980.CrossRefGoogle Scholar
  21. Garcia, R. R., and S. Solomon, A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere, J. Geophys. Res., 88, 1379, 1983.CrossRefGoogle Scholar
  22. Geller, M. A., Dynamics of the middle atmosphere, Space Science Rev., 34, 359, 1983.CrossRefGoogle Scholar
  23. Gill, A. E., Atmosphere-Ocean Dynamics, Academic Press, (New York), 1982.Google Scholar
  24. Grose, W. L., and K. V. Haggard, Numerical simulation of a sudden stratospheric warming with a three-dimensional, spectral, quasi-geostrophic model, J. Atmos. Sci., 38, 1480, 1981.CrossRefGoogle Scholar
  25. Hare, F. K., and B. W. Boville, The polar circulation, Technical note 70, World meteorological organization, Geneva, Switzerland, 1965.Google Scholar
  26. Harwood, R. S., and J. A. Pyle, A two-dimensional mean circulation model for the atmosphere below 80 km, Q. J. Roy. Met. Soc., 101, 723, 1975.CrossRefGoogle Scholar
  27. Hartmann, D. L., Some aspects of the coupling between radiation, chemistry, and dynamics in the stratosphere, J. Geophys. Res., 86, 9631, 1981.CrossRefGoogle Scholar
  28. Hidalgo, H., and P. J. Crutzen, The tropospheric and stratospheric composition perturbed by NOx emissions of high altitude aircraft, J. Geophys. Res., 83, 5833, 1978.CrossRefGoogle Scholar
  29. Hilsenrath, E., and B. M. Schlesinger, Total ozone seasonal and interannual variations derived from the 7 year Nimbus 4 BUV data set, J. Geophys. Res., 86, 12087, 1981.CrossRefGoogle Scholar
  30. Holton, J. R., and R. S. Lindzen, An updated theory for the quasi-biennial cycle of the tropical stratosphere, J. Atmos. Sci., 29, 1076, 1972.CrossRefGoogle Scholar
  31. Holton, J. R., The dynamic meteorology of the stratosphere and mesosphere, Met. Mono. 15, American Met. Soc., 1975.Google Scholar
  32. Holton, J. R., A semi-spectral numerical model for wave, mean flow interactions in the stratosphere: application to sudden stratospheric warmings, J. Atmos. Sci., 33, 1639, 1976.CrossRefGoogle Scholar
  33. Holton, J. R., An introduction to dynamic meteorology, Academic Press, (New York), 1979.Google Scholar
  34. Holton, J. R., and W. M. Wehrbein, The role of forced planetary waves in the annual cycle of the zonal mean circulation of the middle atmosphere, J. Atmos. Sci., 37, 1968, 1980.CrossRefGoogle Scholar
  35. Holton, J. R., The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci., 39, 791, 1982.CrossRefGoogle Scholar
  36. Holton, J. R., The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci., 40, 2497, 1983.CrossRefGoogle Scholar
  37. Hsu, C. P., Air parcel motions during a numerically simulated sudden stratospheric warming, J. Atmos. Sci., 37, 2768, 1980.CrossRefGoogle Scholar
  38. Hunt, B. G., and S. Manabe, Experiments with a stratospheric general circulation model II. Large scale diffusion of tracers in the stratosphere, Mon. Weath. Rev., 96, 503, 1968.CrossRefGoogle Scholar
  39. Hunt, B. G., A generalized aeronomic model of the mesosphere and lower thermosphere including ionospheric processes, J. Atm. Terr. Phys., 35, 1755, 1973.CrossRefGoogle Scholar
  40. Hunten, D. M., Vertical transport in atmospheres, in Atmospheres of Earth and the Planets, W. McCormac, ed., Reidel Pub., (Dordrecht), 1975.Google Scholar
  41. Johnson, F. S., and E. M. Wilkins, Thermal upper limit on eddy diffusion in the mesosphere and lower thermosphere, J. Geophys. Res., 70, 1281, 1965.CrossRefGoogle Scholar
  42. Julian, P. R., and K. B. Labitzke, A study of atmospheric energetics during the January–February 1963 stratospheric warming, J. Atmos. Sci., 22, 597, 1965.CrossRefGoogle Scholar
  43. Kasahara, A., T. Sasamori, and W. M. Washington, Simulation experiments with a 12 layer stratospheric global circulation model I. Dynamical effects of earth’s orography and thermal influence of continentality, J. Atmos. Sci., 30, 1229, 1973.CrossRefGoogle Scholar
  44. Kasting, J. F., and R. G. Roble, A zonally averaged chemical-dynamical model of the lower thermosphere, J. Geophys. Res., 86, 9641, 1981.CrossRefGoogle Scholar
  45. Kawahira, K., A two-dimensional model for ozone changes by planetary waves in the stratosphere I. Formulation and the effect of temperature waves on the zonal mean ozone concentration, J. Met. Soc. Jap., 60, 1058, 1982.Google Scholar
  46. Kida, H., General circulation of air parcels and transport characteristics derived from a hemispheric GCM Part 1. A determination of advective mass flow in the lower stratosphere, J. Met. Soc. Jap., 61, 171, 1983.Google Scholar
  47. Labitzke, K., Climatology of the stratosphere and mesosphere, Phil. Trans. Roy. Soc. Lond. A, 296, 7, 1980.CrossRefGoogle Scholar
  48. Leovy, C., Simple models of thermally driven mesospheric circulation, J. Atm. Sci., 21, 327, 1964.CrossRefGoogle Scholar
  49. Levy, H., J. D. Mahlman, and W. J. Moxim, A preliminary report on the numerical simulation of the three-dimensional structure and variability of atmospheric N2O, Geophys. Res. Lett., 6, 155, 1979.CrossRefGoogle Scholar
  50. Levy, H., J. D. Mahlman, and W. J. Moxim, A stratospheric source of reactive nitrogen in the unpolluted troposphere, Geophys. Res. Lett., 7, 441, 1980.CrossRefGoogle Scholar
  51. Lindzen, R. S., Thermally driven diurnal tide in the atmosphere, Q. J. Roy. Met. Soc., 93, 18, 1967.CrossRefGoogle Scholar
  52. Lindzen, R. S., and J. R. Holton, A theory of the quasi-biennial oscillation, J. Atmos. Sci., 22, 341, 1968.CrossRefGoogle Scholar
  53. Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707, 1981.CrossRefGoogle Scholar
  54. Liu, S. C., and T. M. Donahue, The aeronomy of hydrogen in the atmosphere of the earth, J. Atmos. Sci., 31, 1118, 1974.CrossRefGoogle Scholar
  55. Liu, S. C., D. Kley, M. McFarland, J. D. Mahlman, and H. Levy II, On the origin of tropospheric ozone, J. Geophys. Res., 85, 7546, 1980.CrossRefGoogle Scholar
  56. London, J. L., Radiative energy sources and sinks in the stratosphere and mesosphere, Proc. NATO Advanced Study Institute on Atmospheric Ozone, FAA-EE-80-20, NTIS, Springfield, Va., 1980.Google Scholar
  57. Mahlman, J. D., and W. J. Moxim, Tracer simulation using a global general circulation model: results from a mid-latitude instantaneous source experiment, J. Atmos. Sci., 35, 1340, 1978.CrossRefGoogle Scholar
  58. Mahlman, J. D., H. Levy II, and W. J. Moxim, Three-dimensional tracer structure and behavior as simulated in two ozone precursor experiments, J. Atmos. Sci., 37, 655, 1980.CrossRefGoogle Scholar
  59. Mahlman, J. D., and L. J. Umscheid, Dynamics of the middle atmosphere: successes and problems of the GFDL “SKIHI” general circulation model, in Proceedings of the U. S.-Japan seminar on middle atmosphere dynamics, Terra Scientific Pub., (Tokyo), 1983.Google Scholar
  60. Mahlman, J. D., D. G. Andrews, D. L. Hartmann, T. Matsuno, and R. J. Murgatroyd, Transport of trace constituents in the stratosphere, in Proceedings of the U. S.-Japan seminar on middle atmosphere dynamics, Terra Scientific Pub., (Tokyo), 1983.Google Scholar
  61. Manabe, S., and J. D. Mahlman, Simulation of seasonal and interhemispheric variations in the stratospheric circulation, J. Atmos. Sci., 33, 2185, 1976.CrossRefGoogle Scholar
  62. Matsuno, T., A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 28, 1479, 1971.CrossRefGoogle Scholar
  63. Matsuno, T., and K. Nakamura, The Eulerian and Lagrangian mean meridional circulations in the stratosphere at the time of a sudden warming, J. Atmos. Sci., 36, 640, 1979.CrossRefGoogle Scholar
  64. Matsuno,T., Lagrangian motion of air parcels in the stratosphere in the presence of planetary waves, Pure Appl. Geophys., 118, 189, 1980.CrossRefGoogle Scholar
  65. McElroy, M. B., and J. C. McConnell, Nitrous oxide: a natural source of stratospheric NO, J. Atmos. Sci., 28, 1095, 1971.CrossRefGoogle Scholar
  66. McIntyre, M. E., Towards a Lagrangian mean description of stratospheric circulations and chemical transports, Phil. Trans. Roy. Soc. Lond. A, 296, 129, 1980.CrossRefGoogle Scholar
  67. McIntyre, M. E., and T. N. Palmer, Breaking planetary waves in the stratosphere, Nature, 305, 593, 1983.CrossRefGoogle Scholar
  68. Miller, C., D. L. Filkin, and J. P. Jesson, The fluorocarbon-ozone theory VI. Atmospheric modeling: calculation of the diurnal steady state, Atmos. Env., 13, 381, 1979.CrossRefGoogle Scholar
  69. Miller, C., D. L. Filkin, A. J. Owens, J. M. Steed, and J. P. Jesson, A two-dimensional model of stratospheric chemistry and transport, J. Geophys. Res., 76, 202, 1981.Google Scholar
  70. Murgatroyd, R. J., and F. Singleton, Possible meridional circulations in the stratosphere and mesosphere, Q. J. Roy. Met. Soc., 87, 125, 1961.CrossRefGoogle Scholar
  71. Murgatroyd, R. J., in The global circulation of the atmosphere, G. A. Corby, Ed., Roy. Met. Soc., (London), 1969.Google Scholar
  72. Murgatroyd, R. J., Dynamical modelling of the stratosphere and mesosphere, in Mesospheric models and related experiments, G. Fiocco, ed., Reidel Publishing Co., (Dordrecht), 1971.Google Scholar
  73. Murgatroyd, R. J., An introduction to studies of the general characteristics of the stratosphere and mesosphere, Proc. NATO Advanced Study Institute on Atmospheric Ozone, FAA-EE-80-20, NTIS, Springfield, Va., 1980.Google Scholar
  74. NASA, National Aeronautics and Space Administration, Chlorofluoromethanes and the stratosphere, NASA Reference Publication 1010, 1977.Google Scholar
  75. Nastrom, G. D., B. B. Balsley, and D. A. Carter, Mean meridional winds in the mid and high latitude mesosphere, Geophys. Res. Lett., 9, 139, 1982.CrossRefGoogle Scholar
  76. Newell, R. E., The general circulation of the atmosphere and its effects on the movement of trace substances, J. Geophys. Res., 68, 3949, 1963.Google Scholar
  77. Newson, R. L., An experiment with a tropospheric and stratospheric three-dimensional general circulation model, Proc. Third Conf. on CIAP, DOT-TSC-OST-74-15, U. S. Dept. of Transportation, NTIS, Springfield, Va., 1974.Google Scholar
  78. Nicolet, M., Nitrogen oxides in the chemosphere, J. Geophys. Res., 70, 679, 1965.CrossRefGoogle Scholar
  79. Noxon, J. F., E. Marovich, and R. B. Norton, Effect of a major warming upon stratospheric NO2, J. Geophys. Res., 84, 7883, 1979.CrossRefGoogle Scholar
  80. O’Neill, A., Dynamical processes in the stratosphere: wave motion, Proc. NATO Advanced Study Institute on Atmospheric Ozone, FAA-EE-80-20, NTIS, Springfield, Va., 1980.Google Scholar
  81. Palmer, T. N., Diagnostic study of a wavenumber 2 stratospheric sudden warming in a transformed Eulerian mean formalism, J. Atmos. Sci., 38, 544, 1981.CrossRefGoogle Scholar
  82. Pedlosky, J., Geophysical fluid dynamics, Springer-Verlag, (New York), 1979.Google Scholar
  83. Phillips, N. A., Geostrophic motion, Rev. Geophys., 1, 123, 1963.CrossRefGoogle Scholar
  84. Plumb, R. A., Eddy fluxes of conserved quantities by small amplitude waves, J. Atm. Sci., 36, 1699, 1979.CrossRefGoogle Scholar
  85. Pyle, J. A., and C. F. Rogers, A modified diabatic circulation model for stratospheric tracer transport, Nature, 287, 711, 1980a.CrossRefGoogle Scholar
  86. Pyle, J. A., and C. F. Rogers, Stratospheric transport by stationary planetary waves — The importance of chemical processes, Q. J. Roy. Met. Soc., 106, 421, 1980b.CrossRefGoogle Scholar
  87. Reed, R. J., W. J. Campbell, L. A. Rasmusson, and D. G. Rogers, Evidence of a downward propagating annual wind reversal in the equatorial stratosphere, J. Geophys. Res., 66, 813, 1961.CrossRefGoogle Scholar
  88. Reed, R. J., J. L. Wolfe, and H. Nishimoto, A spectral analysis of the energetics of the stratospheric sudden warming of early 1957, J. Atmos. Sci., 20, 256, 1963.CrossRefGoogle Scholar
  89. Reed, R. J., and K. E. German, A contribution to the problem of stratospheric diffusion by large scale mixing, Mon. Weath. Rev., 93, 313, 1965.CrossRefGoogle Scholar
  90. Rind, D., R. Suozzo, A. Lacis, G. Russell, and J. Hansen, 21 layer troposphere-stratosphere climate model, submitted to Mon. Weath. Rev., 1984.Google Scholar
  91. Rood, R. B., and M. R. Schoeberl, A mechanistic model of Eulerian, Lagrangian mean, and Lagrangian ozone transport by steady planetary waves, J. Geophys. Res., 88, 5208, 1983.CrossRefGoogle Scholar
  92. Schmidt, M., The influence of large scale advection on the vertical distribution of stratospheric source gases in 44 ° and 41 ° North, J. Geophys. Res., 87, 11239, 1982.CrossRefGoogle Scholar
  93. Schoeberl, M. R., and D. F. Strobel, The zonally averaged circulation of the middle atmosphere, J. Atm. Sci., 35, 577, 1978.CrossRefGoogle Scholar
  94. Schoeberl, M. R., Strobel, D. F., and J. P. Apruzese, A numerical model of gravity wave breaking and stress in the mesosphere, J. Geophys. Res., xx, xx, 1983.Google Scholar
  95. Smagorinsky, J., General circulation experiments with the primitive equations I. The basic experiment, Mon. Weath. Rev., 91, 99, 1963.CrossRefGoogle Scholar
  96. Solomon, S., and R. R. Garcia, Simulation of NOx partitioning along isobaric parcel trajectories, J. Geophys. Res., 88, 5497, 1983.CrossRefGoogle Scholar
  97. Stolarski, R. S., and R. J. Cicerone, Stratospheric chlorine: a possible sink for ozone, Can. J. Chem., 52, 1610, 1974.CrossRefGoogle Scholar
  98. Strobel, D. F., D. M. Hunten, and M. B. McElroy, Production and diffusion of nitric oxide, J. Geophys. Res., 75, 4307, 1970.CrossRefGoogle Scholar
  99. Strobel, D. F., Parameterization of linear wave chemical transport in planetary atmospheres by eddy diffusion, J. Geophys. Res., 86, 9806, 1981.CrossRefGoogle Scholar
  100. Trenberth, K. E., Global model of the general circulation of the atmosphere below 75 km with an annual heating cycle, Mon. Weath. Rev., 101, 287, 1973.CrossRefGoogle Scholar
  101. Tuck, A. F., A comparison of one, two, and three-dimensional model representations of stratospheric gases, Phil. Trans. Roy. Soc. Lond. A, 290, 9, 1979.CrossRefGoogle Scholar
  102. Tung, K. K., On the two-dimensional transport of stratospheric trace gases in isentropic coordinates, J. Atmos. Sci., 39, 2330, 1982.CrossRefGoogle Scholar
  103. Veryand, R. G., and R. A. Ebdon, Fluctuations in tropical stratospheric winds, Met. Mag., 90, 125, 1961.Google Scholar
  104. Vincent, D. G., Meridional circulation in the northern hemisphere lower stratosphere during 1964 and 1965, Q. J. Roy. Met. Soc., 94, 333, 1968.CrossRefGoogle Scholar
  105. Vupputuri, R. K., The structure of the natural stratosphere and the impact of chlorofluoromethanes on the ozone layer investigated in a 2-D time dependent model, Pure Appl. Geophys., 117, 448, 1979.CrossRefGoogle Scholar
  106. Weinstock, J., Vertical turbulent diffusion in a stably stratified fluid, J. Atmos. Sci., 35, 1022, 1978.CrossRefGoogle Scholar
  107. Weinstock, J., Nonlinear theory of gravity waves: momentum deposition, generalized Rayleigh friction, and diffusion, J. Atmos. Sci., 39, 1698, 1982.CrossRefGoogle Scholar
  108. World Meteorological Organization (WMO), The stratosphere 1981: Theory and measurements, Report no. 11, WMO global ozone research and monitoring project, Geneva, Switzerland, 1982.Google Scholar
  109. Zimmerman, S. P., and E. A. Murphy, Stratospheric and mesospheric turbulence, in Dynamical and chemical coupling, D. Reidel, (Dordrecht, Holland), 1977.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1986

Authors and Affiliations

  1. 1.Institut d’Aéronomie Spatiale and Université Libre de BruxellesBrusselsBelgium
  2. 2.Aeronomy LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations