Skip to main content

What can be Learned from Low Temperature Reactivity on Room Temperature Rebinding Kinetics of Heme Proteins?

  • Conference paper
Tunneling

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 19))

Abstract

From the low temperature rebinding kinetics of heme proteins we conclude that a single coordinate description of the biophysical process is insufficient. An additional “protein coordinate” is introduced, which is frozen at low temperatures, and relaxes following dissociation at high temperatures. This relaxation causes the barrier to rebinding to increase with time, leading to a biologically significant “self-cooperativity” effect, on the tertiary-structure level, for a single heme subunit. The predicted effect is supported by recent transient Raman scattering experiments. A second conclusion is that the binding rate coefficient must depend on a fractional power of solvent viscosity. The same non-Kramers behavior has recently been observed also in photochemical isomerization. It may therefore be due to the multi-dimensionality of macromolecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alberding, R.H. Austin, K.W. Beeson, S.S. Chan, L. Eisenstein, H. Frauenfelder and T.M. Nordlund, Tunneling in ligand binding to heme proteins’, Science, 192, 1002 (1976)

    Article  CAS  Google Scholar 

  2. N. Alberding, S.S. Chan, L. Eisenstein, H. Frauenfelder, D. Good, I.C. Gunsalus, T.M. Nordlund, M.F. Perutz, A.H. Reynolds and L.B. Sorensen, ‘Binding of carbon monoxide to isolated hemoglobin chains’, Biochem., 17, 43 (1978)

    Article  CAS  Google Scholar 

  3. D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M.C. Marden, L. Reinisch, A.H. Reynolds, L.B. Sorensen and K.T. Yue, ‘Solvent viscosity and protein dynamics’, Biochem., 19, 5147 (1980)

    Article  CAS  Google Scholar 

  4. H. Frauenfelder, ‘Ligand binding and protein dynamics’, in E. Clementi, G. Corongiu, M.H. Sarma and R.H. Sarma, Structure and Motion: Membranes, Nucleic Acids and Proteins, ( Adenine Press, Guilderland NY, 1985 ) p. 205

    Google Scholar 

  5. A. Ansari, J. Berendzen, S.F. Bowne, H. Frauenfelder, LET. Iben, T.B. Sauke, E. Shyamsunder and R.D. Young, ‘Protein states and proteinquakes’, Proc. Natl. Acad. Sci. USA, 82, 5000 (1985)

    Article  CAS  Google Scholar 

  6. f) A. Ansari, EE Di Iorio, D.D. Dlott, H. Frauenfelder, I.E.T. Iben, P. Langer, H. Roder, T.B. Sauke and E Shyamsunder, ‘Ligand binding to heme proteins: The relevance of low-temperature data’, Biochem., Submitted.

    Google Scholar 

  7. E.R. Henry, J.H. Sommer, J. Hofrichter and W.A. Eaton, ‘Geminate recombination of carbon monoxide to myoglobin’. J. Mol. Biol., 166, 443 (1983).

    Article  CAS  Google Scholar 

  8. W.G. Cobau, J.D. LeGrange and R.H. Austin, ‘Kinetic difference at low temperature between R and T state earbonmonoxide-carp hemoglobin’, Biophys. J., 47, 781 (1985).

    Article  CAS  Google Scholar 

  9. N. Agmon and J.J. Hopfield, ‘CO binding to heme proteins: A model for barrier height distributions and slow conformational changes’. J. Chem. Phys., 79, 2042 (1983)

    Article  CAS  Google Scholar 

  10. N. Agmon and J.J. Hopfield, ‘Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: Intramolecular processes with slow conformational changes’, J. Chem. Phys., 78, 6947 (1983).

    Article  CAS  Google Scholar 

  11. R.D. Young and S.F. Bowne, ‘Conformational substates and barrier height distributions in ligand binding to heme proteins’, J. Chem. Phys., 81, 3730 (1984).

    Article  CAS  Google Scholar 

  12. T.W. Scott and J.M Friedman, Tertiary-structure relaxation in hemoglobin: A transient Raman study’, J. Amer. Chem. Soc., 106, 5677 (1984)

    Article  CAS  Google Scholar 

  13. M.R. Ondrias, T.W. Scott, J.M. Friedman and V.W. Macdonald, ‘A resonance Raman study of the temperature dependence of ligand photolysis and recombination in hemoglobins’, Chem. Phys. Lett., 112, 351 (1984)

    Article  CAS  Google Scholar 

  14. J.M. Friedman, ‘Structure, dvnamics, and reactivity in hemoglobin’. Science, 228, 1273 (1985).

    Article  CAS  Google Scholar 

  15. a) A. Szabo, ‘Kinetics of hemoglobin and transition state theory’, Proc. Natl. Acad. Sci. USA, 75, 2108 (1978)

    Article  Google Scholar 

  16. N. Agmon, ‘From energy profiles to structure-reactivity correlations’, Intern. J. Chem. Kinet., 13, 333 (1981).

    Article  CAS  Google Scholar 

  17. a) J.J. Hopfield, ‘Fundamental aspects of electron transfer in biological membranes’, in E. Roux, ed., Electrical phenomena at the biological membrane level ( Elsevier, Amsterdam, 1976 ) p. 471

    Google Scholar 

  18. J.J. Hopfield, ‘Nonadiabatic electron tunneling: Implications for bacterial photosyn¬thesis and for critical tests of the mechanism’, in B. Chance, D. De Vault, H. Frauenfelder, R.A. Marcus, J.R. Schrieffer and N. Sutin, eds., Tunneling in biological systems ( Academic Press, New York, 1979 ) p. 417

    Google Scholar 

  19. J. Jortner, ‘Dynamics of electron transfer in bacterial photosynthesis’, Biochim. Biophys. Acta, 594, 193 (1980)

    CAS  Google Scholar 

  20. D. DeVault, ‘Quantum mechanical tunneling in biological systems’, Quart. Rev. Biophys., 13, 387 (1980).

    Article  Google Scholar 

  21. J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel,’X-ray structure analysis of a membrane protein complex: Electron density map at 3A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas- viridis’, J. Mol. Biol., 180, 385 (1984)

    Article  CAS  Google Scholar 

  22. also: ‘Structure of the protein subunits in the photosynthetic reaction center of Rho- dopseudomonas viridis at 3A resolution’, Nature, 318, 618 (1985).

    Article  Google Scholar 

  23. D. Kleinfeld, M.Y. Okamura and G. Feher, ‘Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: Evidence for ligand induced structural changes’, Biochem., 23, 5780 (1984).

    Article  CAS  Google Scholar 

  24. J.A. McCammon, ‘Protein dynamics’. Rep. Prog. Phys., 47, 1 (1984).

    Article  Google Scholar 

  25. N. Agmon, ‘A diffusion Michaelis-Menten mechanism: Continuous conformational change in enzymatic kinetics’, J. Theor. Biol, 113, 711 (1985).

    Article  CAS  Google Scholar 

  26. H.A. Kramers, ‘Brownian motion in a field of force and the diffusion model of chemical reactions’, Physica (Utrecht), 7, 284 (1940).

    Article  CAS  Google Scholar 

  27. G.H. Weiss, ‘A perturbation analysis of the Wilemski-Fixman approximation for diffusion-controlled reactions’, J. Chem. Phys., 80, 2880 (1984).

    Article  CAS  Google Scholar 

  28. S.P. Velsko, D.H. Waldeck and G.R. Fleming, ‘Breakdown of Kramers theory description of photochemical isomerization and the possible involvement of frequency dependent friction’, J. Chem. Phys., 78, 249 (1983)

    Article  CAS  Google Scholar 

  29. G.R. Fleming, S.H. Courtney and M.W. Balk, ‘Activated barrier crossing: Comparison of experiment and theory’, J. Stat. Phys., 42, 83 (1986).

    Article  Google Scholar 

  30. G. Rothenberger, D.K. Negus and R.M. Hochstrasser, ‘Solvent influence on photoisomerization dynamics’, J. Chem. Phys., 79, 5360 (1983).

    Article  CAS  Google Scholar 

  31. J. Troe, ‘Elementary reactions in compressed gasses and liquids: From collisional energy transfer to diffusion control’, J. Phys. Chem., 90. 357 (1986).

    Article  CAS  Google Scholar 

  32. G. van der Zwan and J.T. Hynes, ‘Reactive paths in the diffusion limit’, J. Chem. Phys., 11, 1295 (1982)

    Article  Google Scholar 

  33. S.H. Northrup and J.A. McCammon, ‘Saddle-point avoidance in diffusional reactions’. J. Chem. Phys., 78, 987 (1983).

    Article  CAS  Google Scholar 

  34. R.F. Grote and J.T. Hynes. The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models’, J. Chem. Phys., 73, 2715 (1980).

    Article  CAS  Google Scholar 

  35. R. Kosloff and N. Agmon, in preparation.

    Google Scholar 

  36. R.D. Keynes, ‘Voltaee-gated ion channels in the nerve membrane’, Proc. Roy. Soc. Lond. B, 220, 1 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this paper

Cite this paper

Agmon, N. (1986). What can be Learned from Low Temperature Reactivity on Room Temperature Rebinding Kinetics of Heme Proteins?. In: Jortner, J., Pullman, B. (eds) Tunneling. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4752-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4752-8_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8611-0

  • Online ISBN: 978-94-009-4752-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics