Skip to main content

The Quantum Kramers’ Problem in the Underdamped Limit

  • Conference paper
Tunneling

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 19))

  • 125 Accesses

Abstract

The problem of particle escape from the quantum potential well in the case of weak coupling to thermal bath is considered. Quantum-mechanical transparency of the barrier is taken into account. Explicit analytic solutions are presented for the distribution function and for the escape rate in the extremely underdamped limit. A model, which rests on an integral self-consistent equation for the distribution function, is utilized for the description of particle escape in the underdamped domain at high temperatures. An equivalent form of the Mel’nikov expression for the escape rate is derived. The resulting expression is analysed for the single- and double-well systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.K. Likharev, Usp. Fiz. Nauk. 139 (1983) 169

    Article  CAS  Google Scholar 

  2. K.K. Likharev, Sov. Phys.-Usp 26 (1983) 87.

    Article  Google Scholar 

  3. R.P. Bell, in: The Tunnel Effect in Chemistry, Chapman & Hall, London, (180).

    Google Scholar 

  4. H. Frauenfelder, in: Tunneling in Biological Systems, eds. B. Chance et al., Academic Press, New York, (1979), p. 627.

    Google Scholar 

  5. H.A. Kramers, Physica 7 (1940) 284.

    Article  CAS  Google Scholar 

  6. A.O. Caldeira and A.J. Leggett, Phys. Rev. Lett. 46, (1981) 211

    Article  Google Scholar 

  7. A.O. Caldeira and A.J. Leggett, Ann. Phys. 149 (1983) 374.

    Google Scholar 

  8. I. Affleck, Phys. Rev. Lett. 46 (1981) 388.

    Article  Google Scholar 

  9. P.G. Wolynes, Phys. Rev. Lett. 47 (1981) 968.

    Article  CAS  Google Scholar 

  10. V.I. Mel’nikov and S.V. Meshkov, Pis’ma Zh. Eksp. Teor. Fiz. 38 (1983) 111

    Google Scholar 

  11. V.I. Mel’nikov and S.V. Meshkov, Sov. Phys.-JETP Lett. 38 (1983) 130.

    Google Scholar 

  12. A.I. Larkin and Yu. N. Ovchinnikov, Pis’ma Zh. Eksp. Teor. Fiz. 37 (1983) 322

    Google Scholar 

  13. A.I. Larkin and Yu. N. Ovchinnikov, Sov. Phys.-JETP Lett. 37 (1983) 382.

    Google Scholar 

  14. A.I. Larkin, and Yu.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 86 (1984) 719

    Google Scholar 

  15. A.I. Larkin and Yu. N. Ovchinnikov, Sov. Phys.-JETP 59 (1984) 420.

    Google Scholar 

  16. H. Grabert, U. Weiss and P. Hanggi, Phys. Rev. Lett. 52 (1984) 2193.

    Article  Google Scholar 

  17. H. Grabert and U. Weiss, Z. Physik B56 (1984) 171.

    Google Scholar 

  18. H. Grabert and U. Weiss, Phys. Rev. Lett. 53 (1984) 1787.

    Article  Google Scholar 

  19. U. Weiss, P. Riseborough, P. Hänggi and H. Grabert, Phys. Lett. 104A (1984) 10

    Article  Google Scholar 

  20. U. Weiss, P. Riseborough, P. Hänggi and H. Grabert, ibid. 104A (1984) 492E

    Google Scholar 

  21. P. Riseborough, P. Hänggi and E. Freidkin, Phys. Rev. A32 (1985)

    Google Scholar 

  22. P. Hänggi, J. Stat. Phys. 42 (1986) 105; and references therein.

    Article  Google Scholar 

  23. P.B. Visscher, Phys. Rev. B. 13 (1976) 3272.

    Article  Google Scholar 

  24. B. Carmeli and A. Nitzan, Phys. Rev. Lett. 51 (1983) 233.

    Article  Google Scholar 

  25. M. Büttiker, E.P. Harris and R. Landauer, Phys. Rev. B. 28 (1983) 1208.

    Article  Google Scholar 

  26. M. Büttiker and R. Landauer, Phys. Rev. B. 30 (1984) 1551.

    Article  Google Scholar 

  27. P. Hänggi and U. Weiss, Phys. Rev. A. 29 (1984) 2265.

    Article  Google Scholar 

  28. B.J. Matkovsky, Z. Schuss and C. Tier, J. Stat. Phys. 35 (1984) 443.

    Article  Google Scholar 

  29. V.I. Mel’nikov, Zh. Eksp. Teor. Fiz. 87 (1984) 663

    Google Scholar 

  30. V.I. Mel’nikov, Sov. Phys.- JETP 60 (1984) 380.

    Google Scholar 

  31. A.I. Larkin and Yu.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 87 (1984) 1842

    Google Scholar 

  32. A.I. Larkin and Yu.N. Ovchinnikov, Sov.Phys.-JETP, 60 (1984) 1060.

    Google Scholar 

  33. I. Rips and J. Jortner, Phys. Rev. B. (to be published).

    Google Scholar 

  34. V.I. Goldanskii, Dokl. Akad. Nauk. SSSR 124 (1959) 1261

    CAS  Google Scholar 

  35. V.I. Goldanskii, ibid. 127 (1959) 1037.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this paper

Cite this paper

Rips, I., Jortner, J. (1986). The Quantum Kramers’ Problem in the Underdamped Limit. In: Jortner, J., Pullman, B. (eds) Tunneling. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4752-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4752-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8611-0

  • Online ISBN: 978-94-009-4752-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics