Skip to main content

Applications of the LCGTO Local Spin Density Method

  • Conference paper
Applied Quantum Chemistry

Abstract

The LCAO (Gaussian) Local (Spin) Density method is being applied to an ever increasing variety of problems. Spectroscopic constants have been calculated for a number of transition metal diatomics (V2,Cr2,Mn2,Fe2,Cu2,Mo2,Pd2,Ag2,PdH,AgH,AgO,AgF) and the nature of the binding has been elucidated. The performance of the method has been tested for the triatomics O3,S3 and CH2 which are prime examples of molecules having two close-lying states, the correct treatment of which requires an accurate treatment of electron correlation. The use of compact basis sets and (relativistic) model potentials for the core electrons has allowed the method to be extended to the study of transition metal clusters and chemisorption complexes. Preliminary results for the systems Agn+O, Agn+ O2 and Pdn+ CO will be presented.

Overall, the level of agreement found with experimental data is highly encouraging. The results summarized here, coupled with other available results, indicate that the LSD approach can provide very good geometries and vibrational frequencies and reasonable values for energy differences, all within a simple orbital framework. More accurate energetic results must await the development and implementation of practical methods incorporating non-local corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quantum Chemistry Program Exchange, 1985 Catalog, QCPE, Indiana University, Bloomington, Indiana.

    Google Scholar 

  2. M.M. Goodgame and W.A. Goddard III, J. Phys. Chem., 85, 215 (1981)

    Article  CAS  Google Scholar 

  3. Phys. Rev. Lett. 48, 135 (1982).

    Article  CAS  Google Scholar 

  4. S.P. Walch, C.W. Bauschlicher, B.O. Roos and C.J. Nelin, Chem. Phys. Lett., 103, 175 (1983).

    Article  CAS  Google Scholar 

  5. P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964).

    Article  Google Scholar 

  6. J.C. Slater, Adv. Quantum Chem. 6, 1 (1972)

    Article  CAS  Google Scholar 

  7. ‘The Self-Consistent Field for Molecules and Solids’ (McGraw-Hill, New York, 1974) Vol. 4.

    Google Scholar 

  8. W. Kohn and L.J. Sham, Phys. Rev., 140, A1133 (1965).

    Article  Google Scholar 

  9. U. von Barth and L. Hedin, J. Phys. C5, 1629 (197 2).

    Google Scholar 

  10. K.H. Johnson, Crit. Rev. Solid State Mater. Sci. 7, 101 (1978).

    Article  CAS  Google Scholar 

  11. R.P. Messmer in “Nature of the Surface Chemical Bond”, T.N. Rhodin and G. Ertl (eds), ( North Holland, Amsterdam, 1978 ).

    Google Scholar 

  12. D.A. Case, Ann. Rev. Phys. Chem., 33, 151 (1982).

    Article  CAS  Google Scholar 

  13. “Theory of the Inhomogeneous Electron Gas”, S. Lundqvist and N.H. March (eds.) ( Plenum, New York, 1983 ).

    Google Scholar 

  14. “Local Density Approximations in Quantum Chemistry and Solid State Physics”, J.P. Dahl and J. Avery (eds.). (Plenum, NY, 1984.)

    Google Scholar 

  15. D.R. Salahub in “Entre l’Atome et le Cristal: les Agrégats”, Ed. F. Cyrot-Lackmann, ( Les Editions de Physique, Les Ulis, 1981 ) p. 59.

    Google Scholar 

  16. D.R. Salahub, Proceedings of NATO Advanced Study Institute on Impact of Cluster Physics in Materials Science and Technology, Ed. J. Davenas, (M. Nijhoff, Amsterdam) in press

    Google Scholar 

  17. H. Sambe and R.H. Felton, J. Chem. Phys. 62, 1122 (1975).

    Article  CAS  Google Scholar 

  18. B.I. Dunlap, J.W. D. Connolly and J.R. Sabin, J. Chem. Phys. 71, 3396, 4993 (1979).

    Article  CAS  Google Scholar 

  19. See M. Levy, Proc. Nat. Acad. Sci. USA 76, 6062 (1979) and a chapter in Density Functional Methods in Physics, eds. R.M. Dreizler and J. da Providencia, (Plenum, New York, 1984) for a discussion of the so-called v-representability problem and the removal of the restriction to non-degenerate ground states. See also, R.G. Parr, Ann. Rev. Phys. Chem. 34, 631 (1983) for an interesting review.

    Google Scholar 

  20. R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954).

    Article  Google Scholar 

  21. J.C. Slater, Phys. Rev. 81, 385 (1951).

    Article  CAS  Google Scholar 

  22. L. Hedin and B.I. Lundqvist, J. Phys. C4, 2064 (1971).

    Google Scholar 

  23. J.F. Janak, V.L. Moruzzi and A.R. Williams, Phys. Rev. B 12, 1257 (1975).

    Article  CAS  Google Scholar 

  24. O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976)

    Article  CAS  Google Scholar 

  25. S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  26. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  27. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  28. B. N. McMaster, unpublished.

    Google Scholar 

  29. S. Wakoh and J. Yamashita, J. Phys. Soc. Japan 21, 1712 (1966)

    Article  CAS  Google Scholar 

  30. J. Kübler, J. Magn. Magn. Mater. 20, 279 (1980).

    Google Scholar 

  31. H.L. Skriver, J. Phys. F 11, 97 (1981).

    Article  CAS  Google Scholar 

  32. K. Schwarz, J. Phys. B11, 1339 (1978).

    CAS  Google Scholar 

  33. G.S. Painter and F.W. Averill, Phys. Rev. B26, 1781 (1982).

    Article  CAS  Google Scholar 

  34. A. Pellegatti, B.N. McMaster and D.R. Salahub, Chem. Phys. 75, 83 (1983).

    Article  CAS  Google Scholar 

  35. A. Selmani, J.M. Sichel and D.R. Salahub, Surface Sci., in press.

    Google Scholar 

  36. F. Herman, J.P. Van Dyke and I.B. Ortenburger, Phys. Rev. Lett. 22, 807 (1969).

    Article  CAS  Google Scholar 

  37. F. Herman, I.B. Ortenburger and J.P. Van Dyke, Intern. J. Quantum Chem. 3S, 827 (1970).

    Google Scholar 

  38. V. Sahni, J. Gruenebaum and J.P. Perdew, Phys. Rev. B26, 4371 (1982).

    Article  CAS  Google Scholar 

  39. A.D. Becke, Intern. J. Quantum Chem. 23, 1915 (1983).

    Article  CAS  Google Scholar 

  40. D.C. Langreth and M.J. Mehl, Phys. Rev. B28, 1809 (1983).

    Article  CAS  Google Scholar 

  41. A. Savin, U. Wedig, H. Preuss and H. Stoll, Phys. Rev. Let. 53, 2087 (1984).

    Article  CAS  Google Scholar 

  42. K.H. Johnson, Adv. Quantum Chem. 7, 143 (1973).

    Article  CAS  Google Scholar 

  43. R.P. Messmer, S.K. Knudson, K.H. Johnson, J.B. Diamond and C. Y. Yang, Phys. Rev. B13, 1396 (1976).

    Article  CAS  Google Scholar 

  44. F. Raatz and D.R. Salahub, Surface Sci. 146, L609 (1984).

    Article  CAS  Google Scholar 

  45. G. S. Painter and D.E. Ellis, Phys. Rev. B1, 4747 (1970).

    Article  Google Scholar 

  46. D. E. Ellis and G.S. Painter, Phys. Rev. B2, 2887 (1970).

    Article  Google Scholar 

  47. B. Delley, D.E. Ellis, A.J. Freeman, E.J. Baerends and D. Post Phys. Rev. B27, 2132 (1983).

    Article  CAS  Google Scholar 

  48. B. Delley, A.J. Freeman and D.E. Ellis, Phys. Rev. Lett. 50, 1451 (1983).

    Article  Google Scholar 

  49. O.K. Andersen and R.G. Woolley, Mol. Phys. 26, 905 (1973).

    Article  CAS  Google Scholar 

  50. O.K. Andersen, Phys. Rev. B12, 3060 (1975).

    Article  CAS  Google Scholar 

  51. O. Gunnarsson, J. Harris and R.0. Jones, Phys. Rev. B15, 3027 (1977).

    Article  CAS  Google Scholar 

  52. J.E. Müller, R.0. Jones and J. Harris, J. Chem. Phys. 79, 1874 (1983).

    Article  Google Scholar 

  53. J.E. Müller and J, Harris, preprint.

    Google Scholar 

  54. R.P. Messmer and S.H. Lamson, Chem. Phys. Lett. 90, 31 (1982).

    Article  CAS  Google Scholar 

  55. N.A. Baykara, J. Andzelm, S.Z. Baykara and D.R. Salahub, unpublished.

    Google Scholar 

  56. A.D. Becke, J. Chem. Phys. 76, 6037 (1982); 78, 4787 (1983).

    Google Scholar 

  57. L. Laaksonen, P. Pyykkö and D. Sundholm, Intern. J. Quantum Chem. 23, 309, 319 (1983).

    Article  CAS  Google Scholar 

  58. D. Sundholm, P. Pyykkö and L. Laaksonen, personal communication (1984).

    Google Scholar 

  59. J. Andzelm, E. Radzio and D.R. Salahub, J. Comp. Chem., in press.

    Google Scholar 

  60. E, Radzio, J. Andzelm and D.R. Salahub, J. Comp. Chem., in press.

    Google Scholar 

  61. J. Andzelm, E. Radzio and D.R. Salahub, Submitted to J. Chem. Phys.

    Google Scholar 

  62. T. Zivkovic and Z.B. Maksic, J. Chem. Phys. 49, 3083 (1968). For s and p functions the Hermite Gaussians are identical to the familiar cartesian Gaussians. For higher “lℓ” differences occur, for example some of the Hermite “d” functions contain spherically symmetric components. These differences must be remembered when comparing results with, say, ab initio calculations based on cartesian Gaussians. While calculations can be set up to effectively use cartesian Gaussians by taking appropriate linear combinations, this is somewhat inconvenient. We hope to eventually re-write the programs to use cartesian Gaussians in order to be somewhat more in line with mainstream quantum chemistry.

    Google Scholar 

  63. F. Herman and S. Skillman, Atomic Structure Calculations (Prentice-Hall, Englewood Cliffs, New Jersey, 1963 ).

    Google Scholar 

  64. V. Bonifacic and S. Huzinaga, J. Chem. Phys. 60, 2779 (1974).

    Article  CAS  Google Scholar 

  65. S. Huzinaga, M. Klobukowski and Y. Sakai, J. Phys. Chem. 88, 4880 (1984)

    Article  CAS  Google Scholar 

  66. Y. Sakai and S. Huzinaga, J. Chem. Phys., 76, 2537 (1982).

    Article  CAS  Google Scholar 

  67. K.P. Huber in American Institute of Physics Handbook, ed. D.E. Gray ( McGraw-Hill, New York, 1972 ).

    Google Scholar 

  68. A.D. Becke, J. Chem. Phys. 76, 6037 (1983); 78, 4787 (1983).

    Google Scholar 

  69. G.S. Painter and F.W. Averill, Phys. Rev. B26, 1781 (1982).

    Article  CAS  Google Scholar 

  70. E.J. Baerends and P. Ros, Intern. J. Quantum Chem. 12S, 169 (1978).

    Google Scholar 

  71. C2-G. Verhaegen, W.G. Richards and C.M. Moser, J. Chem. Phys. 46, 160 (1967)

    Article  CAS  Google Scholar 

  72. N2 — P.E. Cade, K.D. Sales and A.C. Wahl, J. Chem. Phys. 44, 1973 (1966)

    Article  CAS  Google Scholar 

  73. — W.M. Huo, J. Chem. Phys. 43, 624 (1965)

    Article  Google Scholar 

  74. O2 — P.E. Cade, G. Malli and H. Popkie, reported by H.F. Schaeffer, J. Chem. Phys. 54, 2207 (1971)

    Article  Google Scholar 

  75. F2 — G. Das and A.C. Wahl, J. Chem. Phys. 44, 87 (1966).

    Article  CAS  Google Scholar 

  76. A. Kant, and B. Strauss, J. Chem. Phys. 45, 3161 (1966).

    Article  CAS  Google Scholar 

  77. Yu. M. Efremov, A.N. Samoilova, and L.V. Gurvich, Opt. Spectrosc. 36, 381 (1974).

    Google Scholar 

  78. Yu. M. Efremov, A.N. Samoilova, and L.V. Gurvich, Chem. Phys. Lett., 44, 108 (1976).

    Article  CAS  Google Scholar 

  79. Yu. M. Efremov, A.N. Samoilova, K.B. Kozhukhovsky and L.V. Gurvich, J. Mol. Spectrosc. 73, 430 (1978).

    Article  CAS  Google Scholar 

  80. J. Harris and R.O. Jones, J. Chem. Phys. 70, 830 (1979).

    Article  CAS  Google Scholar 

  81. M.M. Goodgame and W.A. Goddard III, J. Phys. Chem. 85, 215 (1981).

    Article  CAS  Google Scholar 

  82. M.M. Goodgame and W.A. Goddard III, Phys. Rev. Lett. 48, 135 (1982).

    Article  CAS  Google Scholar 

  83. D.L. Michalopoulos, M.E. Geusic, S.G. Hansen, D.E. Powers and R.E. Smalley, J. Phys. Chem. 86, 3914 (1982).

    Article  CAS  Google Scholar 

  84. B.I. Dunlap, Phys. Rev. A 27, 2217 (1983).

    CAS  Google Scholar 

  85. V. E. Bondybey and J.H. English, Chem. Phys. Lett. 94., 443 (1983).

    Article  CAS  Google Scholar 

  86. R.A. Kok and M.B. Hall, J. Phys. Chem. 87, 715 (1983).

    Article  CAS  Google Scholar 

  87. B. Delley, A.J. Freeman and D.E. Ellis, Phys. Rev. Lett. 50, 488 (1983).

    Article  CAS  Google Scholar 

  88. J. Bernholc and N.A.W. Holzwarth, Phys. Rev. Lett. 50, 1451 (1983).

    Article  CAS  Google Scholar 

  89. S.J. Riley, E.K. Parks, L.G. Pobo and S. Wexler, J. Chem. Phys. 79, 2577 (1983).

    Article  CAS  Google Scholar 

  90. N.A. Baykara, B.N. McMaster and D.R. Salahub, Mol. Phys. 52, 891 (1984).

    Article  CAS  Google Scholar 

  91. R.P. Messmer, J. Vac. Sci. Techno1. A 2, 899 (1984).

    CAS  Google Scholar 

  92. S.P. Walch, C.W. Bauschlicher, B.O. Roos and C.J. Nelin, Chem. Phys. Lett. 103, 175 (1983).

    Article  CAS  Google Scholar 

  93. M.M. Goodgame and W.A. Goddard III, Phys. Rev. Lett. 54, 661 (1985).

    Article  CAS  Google Scholar 

  94. D.R. Salahub and N.A. Baykara, Surface Sci., in press.

    Google Scholar 

  95. N.A. Baykara and D.R. Salahub, unpublished.

    Google Scholar 

  96. P.R.R. Langridge-Smith, M.D. Morse, G.P. Hansen, R.E. Smalley and A.J. Merer, J. Chem. Phys. 80, 593 (1984).

    Article  CAS  Google Scholar 

  97. M. Moskovits, D.P. DiLella and W. Limm, J. Chem. Phys. 90, 626 (1984).

    Article  Google Scholar 

  98. J. Andzelm, E. Radzio and D.R. Salahub, unpublished.

    Google Scholar 

  99. H. Purdum, P.A. Montano, G.K. Shenoy and 1. Morrison, Phys. Rev. B 25, 4412 (1982).

    Article  CAS  Google Scholar 

  100. M. Moskovits and D.P. DiLella, J. Chem. Phys. 73, 4917 (1980).

    Article  CAS  Google Scholar 

  101. I. Shim and K.A. Gingerich, J. Chem. Phys. 77, 2490 (1982).

    Article  CAS  Google Scholar 

  102. K.P. Huber and G. Herzberg “Constant of Diatomic Molecules” ( Van Nostrand Reinhold, New York, 1979 ).

    Google Scholar 

  103. J.B. Hopkins, P.R.R. Langridge-Smith, M.D. Morse and R.E. Smalley, J. Chem. Phys. 78, 1627 (1983).

    Article  CAS  Google Scholar 

  104. S.K. Gupta, R.M. Atkins and K.A. Gingerich, Inorg. Chem. 7, 3211 (1978).

    Article  Google Scholar 

  105. J. Andzelm, E. Radzio and D.R. Salahub, ref. (59) and unpublished work.

    Google Scholar 

  106. C. Malmberg, R. Scullman and P. Nylen, Ark. Fys. 39, 495 (1969).

    Google Scholar 

  107. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, Princeton, N.J. 1966), vol. 3, and references therein.

    Google Scholar 

  108. D.C. Frost, S.T. Lee, and C.A. McDowell, Chem. Phys. Lett, 24, 149 (1974).

    Article  CAS  Google Scholar 

  109. C.R. Brundle, Chem. Phys. Lett. 26, 25 (1974).

    Article  CAS  Google Scholar 

  110. J.M. Dyke, L. Golob, N. Jonathan, A. Morris and M. Okuda, J. Chem. Soc. Faraday Trans. 2, 1828 (1974).

    Google Scholar 

  111. R.J. Celotta, S.R. Mielczarek and C.E. Kuyatt, Chem. Phys. Lett. 24, 428 (1974).

    Article  CAS  Google Scholar 

  112. N. Swanson and R.J. Celotta, Phys. Rev. Lett. 35, 783 (1975).

    Article  CAS  Google Scholar 

  113. P.J. Hay, T.H. Dunning Jr. and W.A. Goddard III, J. Chem. Phys. 62, 3912 (1975).

    Article  CAS  Google Scholar 

  114. R.P. Messmer and D.R. Salahub, J. Chem. Phys. 65, 779 (1976).

    Article  CAS  Google Scholar 

  115. P.J. Hay and T.H. Dunning Jr., J. Chem. Phys. 67, 2290 (1977).

    Article  CAS  Google Scholar 

  116. W.G. Laidlaw and M. Trsic, Chem. Phys. 36, 323 (1979).

    Article  CAS  Google Scholar 

  117. C.W. Wilson Jr. and D.G. Hopper, J. Chem. Phys. 74, 595 (1981).

    Article  CAS  Google Scholar 

  118. W.D. Laidig and H.F. Schaefer III, J. Chem. Phys. 74, 595 (1981).

    Article  Google Scholar 

  119. D.R. Salahub, S.H. Lamson and R.P. Messmer, Chem. Phys. Lett. 85, 430 (1982).

    Article  CAS  Google Scholar 

  120. W.L. Feng, 0. Novarro and J. Garcia-Prieto, Chem. Phys. Lett, 111, 297 (1984).

    Article  CAS  Google Scholar 

  121. R.O. Jones, J. Chem. Phys. 82, 325 (1985).

    Article  CAS  Google Scholar 

  122. M. Morin, A.E. Foti and D.R. Salahub, Can. J. Chem., in press.

    Google Scholar 

  123. W.G. Laidlaw amd M. Trsic,Can. J. Chem. in press.

    Google Scholar 

  124. K. H. Johnson, Adv. Quantum Chem. 7, 143 (1973).

    Article  CAS  Google Scholar 

  125. S.J. Cole, G.D. Purvis III and R.J. Bartlett, Chem. Phys. Lett. 113, 271 (1985).

    Article  CAS  Google Scholar 

  126. E. Radzio and D.R. Salahub, unpublished.

    Google Scholar 

  127. H.J. Werner and E.A. Reinsch, J. Chem. Phys. 76, 3144 (1982).

    Article  CAS  Google Scholar 

  128. J. Andzelm and D.R. Salahub, unpublished.

    Google Scholar 

  129. R.J. Behm, K. Christmann, G. Ertl, M.A. Van Hove, P.A. Thiel and W.H. Weinberg, Surf. Sci. 88, L59 (1979).

    Article  CAS  Google Scholar 

  130. J. Rogozik, J. Kuppers and V. Dose, Surf. Sci. 148, L653 (1984).

    Article  CAS  Google Scholar 

  131. A. Selmani, J. Andzelm and D.R. Salahub, unpublished.

    Google Scholar 

  132. A. Selmani, J. Sichel and D.R. Salahub, Surface Sci., in press.

    Google Scholar 

  133. A. Puschmann and J. Haase, Surface Sci. 144, 559 (1984).

    Article  CAS  Google Scholar 

  134. The preliminary all-electron results reported at the conference turned out to be highly contaminated by basis set inadequacies and BSSE. They should be disregarded.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Salahub, D.R. (1986). Applications of the LCGTO Local Spin Density Method. In: Smith, V.H., Schaefer, H.F., Morokuma, K. (eds) Applied Quantum Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4746-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4746-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8609-7

  • Online ISBN: 978-94-009-4746-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics