Skip to main content

The Air-Sea Exchange of Low Molecular Weight Halocarbon Gases

  • Chapter
The Role of Air-Sea Exchange in Geochemical Cycling

Part of the book series: NATO ASI Series ((ASIC,volume 185))

Abstract

The gases considered in this chapter all contain a halogen-carbon bond and have up to three carbon atoms in the molecule; they include methyl halides (CH3CI, CH3Br, CH3I), haloforms (CHC13, CHBr3), carbon tetrachloride (CC14), and man-made chlorofluorocarbons, amongst others. Organo-halogens of high molecular weight are discussed in the article in this book by Atlas. Inorganic halogen gases aren’t dealt with here, even though air-sea transfer is important in the cycling of several of them; for example the air-to-sea transfer of SF, the possible emission of I2 from the oceans by reaction of O3 with I- in surface seawater (Garland and Curtis, 1981), and the evolution of HC1g from sea-salt droplets in the atmosphere (see Duce and Hoffman, 1976 for a review). The only fluorine compounds to be mentioned are the man-made chlorofluorocarbons (often referred to by the Dupont tradename ‘Freons’), since natural organo-fluorine gases do not appear to have been detected in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg, W.W., P.D. Sperry, K.A. Rahn and E.S. Gladney, 1983:‘Atmospheric bromine in the Arctic.’ J. Geophys. Res 88, 6719–6736.

    Article  Google Scholar 

  • Berg, W.W., L.E. Heidt, W. Pollock, P.D. Sperry and R.J. Cicerone, 1984: ’Brominated organic species in the Arctic atmosphere.’ Geophys. Res. Letts., 11, 429-432.

    Article  Google Scholar 

  • Bullister, J. and R.F. Weiss, 1983: ‘Anthropogenic chlorofluoromethanes in the Greenland and Norwegian Seas.’ Science 221, 265–268.

    Article  Google Scholar 

  • Chameides, W.L. and D.D. Davis, 1980: ‘Iodine: Its possible role in tropospheric photochemistry.’ J. Geophys. Res, 85, 7383–7398.

    Article  Google Scholar 

  • Cicerone, R., 1984: ‘Halogens.’ In: Global Tropospheric Chemistry: A Plan for Action, National Academy Press, 128–132.

    Google Scholar 

  • Crutzen, P.J., L.E. Heidt, J.P. Krasnec, W.H. Pollack and W. Seiler, 1979: ‘Biomass burning as a source of atmospheric gases CO, H2, N2O, CH3C1 and COS.’ Nature, 282, 253–256.

    Article  Google Scholar 

  • Duce, R.A. and E.J. Hoffman, 1976: ‘Chemical fractionation at the air- sea interface.’ Ann. Rev. Earth Planet. Scis, 4, 187–228.

    Article  Google Scholar 

  • Dryssen, D. and E. Fogelqvist, 1981: ‘Bromoform concentrations of the Arctic Ocean in the Svalbard area.’ Oceanologica Acta, 4, 313–317.

    Google Scholar 

  • Fenical, W., 1981: ‘Natural halogenated organics.’ In: Marine Organic Chemistry’ (E.K. Duursma and R. Dawson, eds. ), Elsevier, 375–393.

    Google Scholar 

  • Fogelqvist, E., 1985. ‘Carbon tetrachloride, tetrachloroethylene, 1,1,1- trichloroethane and bromoform in Arctic seawater.’ J. Geophys. Res, 90, 9181–9193.

    Article  Google Scholar 

  • Gammon, R.H., J. Cline and D. Wisegarver, 1982: ‘Chlorofluoromethanes in the northeast Pacific Ocean: Measured vertical distributions and application as transient tracers of upper ocean mixing.’ J. Geophys. Res, 87, 9441–9454.

    Article  Google Scholar 

  • Garland, J.A. and H. Curtis, 1981: ‘Emission of iodine from the sea surface in the presence of ozone’. J. Geophys. Res 86, 3183–3186.

    Article  Google Scholar 

  • Glew, D.N. and E.A. Moelwyn-Hughes, 1953: ‘Chemical statics-of the methyl halides in water.’ Dis. Faraday Soc., 15, 150–161.

    Article  Google Scholar 

  • Gschwend, P.M., J.K. MacFarlane and K.A. Newman,1985: ‘Volatile halogenated organic compounds released to seawater from temperate marine macroalgae.’ Science 227, 1033–1035.

    Article  Google Scholar 

  • Harper, D.B., 1985: ‘Halomethane from halide ion - a highly efficient fungal conversion of environmental significance.’ Nature, 315, 55–57.

    Article  Google Scholar 

  • Horvath, A.L., 1982: Halogenated Hydrocarbons: Solubility-Miscibility with Water, Dekker, 889 pp.

    Google Scholar 

  • Hunter-Smith, R.J., P.W. Balls and P.S. Liss, 1983: ‘Henry’s Law constants and the air-sea exchange of various low molecular weight halocarbon gases.’ Tellus, 35B, 170–176.

    Article  Google Scholar 

  • Jenkin, M.E., R.A. Cox and D.E. Candeland, 1985: ‘Photochemical aspects of tropospheric iodine behaviour.’ J. Atmos. Chem 2, 359–375.

    Article  Google Scholar 

  • Khalil, M.A.K. and R.A. Rasmussen, 1981: ‘Atmospheric methylchloride (CH3CI).’ Chemosphere, 10, 1019–1023.

    Article  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen and S.D. Hoyt, 1983: ‘Atmospheric chloroform (CHCI3): ocean-air exchange and global mass balance.’ Tellus, 35B, 266–274.

    Article  Google Scholar 

  • Liss, P.S. and P.G. Slater, 1974: ‘Flux of gases across the air-sea interface.’ Nature, 247, 181–184.

    Article  Google Scholar 

  • Logan, J.A., M.J. Prather, SC. Wofsy and M.B. McElroy, 1981: ‘Tropospheric chemistry: a global perspective.’ J. Geophys. Res 86, 7210–7254.

    Article  Google Scholar 

  • Lovelock, J.E., 1975: ‘Natural halocarbons in the air and in the sea.’ Nature 256, 193–194.

    Article  Google Scholar 

  • Lovelock, J.E., 1979: Gaia: A New Look at Life on Earth, Oxford, 157 pp.

    Google Scholar 

  • Lovelock, J.E., R.J. Maggs and R.J. Wade, 1973: ‘Halogenated hydrocarbons in and over the Atlantic.’ Nature, 241, 194–196.

    Article  Google Scholar 

  • Miyake, Y. and S. Tsunogai, 1963: ‘Evaporation of iodine from the ocean’ J. Geophys. Res., 68, 3989–3994.

    Google Scholar 

  • N.A.S., 1976: Halocarbons: Effects on Stratospheric Ozone, National Academy of Sciences, 352pp.

    Google Scholar 

  • Penkett, S.A., 1982: ‘Non-methane organics in the remote troposphere.’ In: Atmospheric Chemistry(E.D. Goldberg, eds.), Springer-Verlag, 329–355.

    Google Scholar 

  • Penkett, S.A., B.M.R. Jones, M.J. Rycroft and D.A. Simmons, 1985: ‘An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere.’ Nature, 318, 550–553.

    Article  Google Scholar 

  • Rasmussen, R.A., L.E. Rasmussen, M.A.K. Khalil and R.W. Dalluge, 1980: ‘Concentration distribution of methyl chloride in the atmosphere.’ J. Geophys. Res 85, 7350–7356.

    Article  Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil, R. Gunawardena and S.D. Hoyt, 1982: ‘Atmospheric methyl iodide (CH3I).’ J. Geophys. Res, 87, 3086–3090.

    Article  Google Scholar 

  • Singh, H.B., L.J. Salas, H. Shigeishi and E. Scribner, 1979: ‘Atmospheric halocarbons, hydrocarbons, and sulfur hexafluoride: Global distributions, sources and sinks.’ Science, 203 899–903.

    Article  Google Scholar 

  • Singh, H.B., L.J. Salas and R.E. Stiles, 1983: ‘Methyl haTiEes in and over the Eastern Pacific.’ J. Geophys. Res., 88, 3684–3690.

    Article  Google Scholar 

  • Watson, A.J. and M.I. Liddicoat, 1985: ‘Recent history of atmospheric trace gas concentrations deduced from measurements in the deep sea Application to sulphur hexafluoride and carbon tetrachloride.’ Atmos. Env 19, 1477–1484.

    Article  Google Scholar 

  • Watson, A.J., J.E.Tovelock and D.H. Stedman, 1980: ‘The problem of atmospheric methyl chloride.’ In: Proc. NATO ASI on Atmospheric Ozone(A.C. Aikin, ed.), U.S. Federal Aviation Administration, 365–372.

    Google Scholar 

  • Weiss, R.F., J.L. Bullister, R.H. Gammon and M.J. Warner, 1985: ‘Atmospheric chlorofluoromethanes in the deep equatorial Atlantic.’ Nature, 314, 608–610.

    Article  Google Scholar 

  • White, R.H., 1982: ‘Analysis of dimethyl sulfonium compounds in marine algae.’ J. Mar. Res., 40, 529–536.

    Google Scholar 

  • Wofsy, S.C., M.B. McElroy and Y.L. Yung, 1975: ‘The chemistry of atmospheric bromine.’ Geophys. Res. Letts., 2, 215–218.

    Article  Google Scholar 

  • Yung, Y.L., M.B. McElroy and S.C. Wofsy, 1975: ‘Atmospheric halocarbons: A discussion with emphasis on chloroform.’ Geophys. Res. Letts., 2, 397–399.

    Article  Google Scholar 

  • Zafiriou, O.C., 1975: ‘Reaction of methyl halides with seawater and marine aerosols.’ J. Mar. Res., 33, 75–81.

    Google Scholar 

  • Zika, R.G., L.T. Gidel and D.D. Davis, 1984. ‘A comparison of photolysis and substitution decomposition rates of methyl iodide in the ocean.’ Geophys. Res. Letts, 11, 353–356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Liss, P.S. (1986). The Air-Sea Exchange of Low Molecular Weight Halocarbon Gases. In: Buat-Ménard, P. (eds) The Role of Air-Sea Exchange in Geochemical Cycling. NATO ASI Series, vol 185. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4738-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4738-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8606-6

  • Online ISBN: 978-94-009-4738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics