Skip to main content

Theoretical Studies of the C4 Molecule

  • Chapter
  • 196 Accesses

Part of the book series: NATO ASI Series ((ASIC,volume 184))

Abstract

Optimized geometries and relative energies for three states of the C4, molecule have been obtained from single-reference configuration interaction (SRCI) calculations. The 1g + acetylenic form correlates with two ground state1g + C2molecules, from which it can be formed without activation. The1g + state, however, is calculated to lie approximately 25 kcal above the 3g state. At the SRCI level, a rhombic form is calculated to lie 1.1 kcal below the triplet form; consideration of the Davidson correction reduces this difference to 0.4 kcal, while more complete basis sets are expected to increase the difference only by about 0.2 kcal. Consideration of these effects and difference in zero-point energy leads to a final estimated splitting of 1.2 kcal, favoring the rhombus. To aid the determination of the ground state, preliminary estimates of the lowest optical transitions were obtained from SRCI calculations and vibrational frequencies were obtained from SCF calculations. Comparison of the calculated results with experimentally obtained spectra suggest the possibility that both the linear triplet and the rhombus may have already been observed.

Author to whom correspondence should be addressed

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. S. Pitzer and E. Clementi, J. Am. Chem. Soc. 81, 4477 (1959).

    Article  CAS  Google Scholar 

  2. E. Clementi, J. Am. Chem. Soc. 83, 4501 (1961).

    Article  CAS  Google Scholar 

  3. D. W. Ewing and G. V. Pfeiffer, Chem. Phys. Letters 86, 365 (1982) and references therein.

    Article  CAS  Google Scholar 

  4. R. A. Whiteside, R. Krishnan, D. J. Defrees, John A. Pople, and P. v.R. Schleyer, Chem. Phys. Letters 78, 358 (1981).

    Article  Google Scholar 

  5. R. L. Altman, J. Chem. Phys. 32, 615 (1968) and references contained therein.

    Article  Google Scholar 

  6. a) L. Gausset, G. Herzberg, A. Lagerqvist, and B. Rosen, Astrophys. J. 142, 45 (1965).

    Article  CAS  Google Scholar 

  7. b) W. Weltner and D. McLeod, J. Chem. Phys. 45, 3096 (1966).

    Article  CAS  Google Scholar 

  8. W. R. M. Graham, K. I. Dismuke, and W. Weltner, Jr., Astrophys. J. 204, 301 (1976).

    Article  CAS  Google Scholar 

  9. K. R. Thompson, R. L. DeKock, and W. Weltner, Jr., J. Am. Chem.Soc. 93, 4688 (1971).

    Article  Google Scholar 

  10. . T. H. Dunning, J. Chem. Phys. 53, 2823 (1970).

    Article  CAS  Google Scholar 

  11. P. Seighbahn, B. Roos, P. Taylor, J. Almlof, M. Heiberg, and C. Bauschlicher.

    Google Scholar 

  12. J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc. 102, 939 (1980).

    Article  CAS  Google Scholar 

  13. M. Tanimoto, K. Kuchitsu, and Y. Morino, Bull. Chem. Soc. Jap. 42, 2519 (1969).

    Article  CAS  Google Scholar 

  14. Quoted by O. Bastiansen and M. Traetteberg, Tetrahedron 17, 147 (1962).

    Article  CAS  Google Scholar 

  15. K. B. Wiberg, Acc. Chem. Res. 17, 379 (1984) and references there- in.

    Article  CAS  Google Scholar 

  16. J. E. Jackson and L. C. Allen, J. Am. Chem. Soc. 106, 591 (1984).

    Article  CAS  Google Scholar 

  17. J. A. Pople, H. B. Schlegel, R. Krishnan, D. J. DeFrees, J. S. Binkley, M. J. Frisch, R. A. Whiteside, Int. Journal Quant. Chem.: Quantum Chemistry Symposium 15, 269 (1981).

    CAS  Google Scholar 

  18. . D. H. Liskow, C. F. Bender, and H. F. Schaefer, III, J. Chem. Phys. 56 5075 (1972).

    Article  CAS  Google Scholar 

  19. W. M. Schubert, T. H. Liddicoct, and W. A. Lanka, J. Am. Chem. Soc. 76, 1919 (1954).

    Google Scholar 

  20. S. R. Langhoff and E. R. Davidson, Int. Journal Quant. Chem. 8, 61 (1974)

    Article  CAS  Google Scholar 

  21. J. Chem. Phys. 64, 4699 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Ritchie, J.P., King, H.F., Young, W.S. (1986). Theoretical Studies of the C4 Molecule. In: Rentzepis, P.M., Capellos, C. (eds) Advances in Chemical Reaction Dynamics. NATO ASI Series, vol 184. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4734-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4734-4_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8604-2

  • Online ISBN: 978-94-009-4734-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics