Orbit Correction Using Jefferys’ Method of Least Squares

  • R. L. Duncombe
  • A. L. Whipple
  • P. D. Hemenway
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 127)


In an on-going project to establish a dynamical reference system from the motions of selected minor planets, the need arises for a method for fitting orbital models to observed data. The method pro-posed by Jefferys is applied to this problem for the first time and in a test case exhibits a significant advantage over traditional methods of least squares.


Iteration Number Hubble Space Telescope Minor Planet Observation Number Orbit Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brouwer, D.: 1935, Astron.J.,No. 1022.Google Scholar
  2. Brouwer, D.: 1941, In Annals of the New York Academy of Sciences, XLII, 133.Google Scholar
  3. Duncombe,R.L., and P.D. Hemenway: 1982, Cel. Meoh., 26, 207.ADSCrossRefGoogle Scholar
  4. Dyson, F.: 1928, Trans. IAU. ,3, 227.ADSGoogle Scholar
  5. Fehlberg, E.: 1968, NASA TR, R-287.Google Scholar
  6. Fricke, W.: 1982, Astron. J., 87, 1338.ADSCrossRefGoogle Scholar
  7. Jefferys, W. H.: 1980, Astron. J. , 85, 177.MathSciNetADSCrossRefGoogle Scholar
  8. Jefferys, W. H.: 1981, Astron. J. , 86, 149.MathSciNetADSCrossRefGoogle Scholar
  9. Numerov, B.: 1933, Bull. Inst. Astron. Leningrad. Google Scholar
  10. Pierce, D.A.: 1971, Astron. J. , 76, 177, p. 19, 20.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • R. L. Duncombe
    • 1
  • A. L. Whipple
    • 1
  • P. D. Hemenway
    • 1
  1. 1.Center for Space Research, and Department of Aerospace EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations