Advertisement

Second Order Solution of a Radial Intermediary in Satellite Theory

  • J. A. Caballero
  • S. Ferrer
  • M. L. Sein-Echaluce
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 127)

Abstract

In Cid et al. (1985), after two Lie-type canonical transformations, a new radial intermediary for the artificial satellite theory is obtained. Here, the system defined by this reduced Hamiltonian is integrated by applying the Krylov-Bogoliubov’s method. The solution is given explicitly up to the second order, for the case of small eccentricity orbits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfriend, K., and S. Coffey: 1984a, Celes.Mech. 32, 163.ADSzbMATHCrossRefGoogle Scholar
  2. Alfriend, K. and S. Coffey: 1984b, J.Guidence Control 7, 575.ADSCrossRefGoogle Scholar
  3. Bogoliubov, N. and Y. Mitropolsky: 1961, Asymptotic Methods in the Theory of Non-Linear Oscillations, Hindustan Publications, Delhi, ch. I.Google Scholar
  4. Cid, R.,and J. Lahulla: 1969, Rev. Acad. Zaragoza, s. 2, 24, 159.Google Scholar
  5. Cid, R.,S. Ferrer, and M.L. Sein-Echaluce: 1985, AAS Paper 85–323 AAS/AIAA Astrodynamics Conference, August 12–15, Vail, CO.Google Scholar
  6. Coffey, S.,and A. Deprit: 1982, J. Guidance Control 5, 366MathSciNetzbMATHCrossRefGoogle Scholar
  7. Deprit, A.: 1969, Celes. Mech. 1, 12.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Deprit, A.: 1981, Celes. Mech. 24, 111.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. Ferrandiz, J.M., S. Ferrer,and M.L. Sein-Echaluce:1986, Celes. Mech. (submitted)Google Scholar
  10. Sein-Echaluce, M.L.: 1985, ‘Thesis’ (in preparation)Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • J. A. Caballero
    • 1
  • S. Ferrer
    • 1
  • M. L. Sein-Echaluce
    • 1
  1. 1.Departamento de AstronomiaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations