A New Transformation of the Two-Body Problem to Oscillator Form

  • José M. Ferrándiz
  • Ana Fernandez-Ferreirós
Part of the Astrophysics and Space Science Library book series (ASSL, volume 127)


In this paper we propose a change of variables, similar to Bond’s,which reduces the Kepler’s problem to a three dimensional harmonic oscillator, the new time being proportional to the eccentric anomaly. This transformation is extended to include arbitrary anomalies and can be used to linearize some perturbed problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belen’kii, I.M.: 1981, Celest Mech. 23, 9.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Bond, V.: 1985, Celest Mech. 35, 1.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. Cid,R. et al.: 1983, Celest Mech. 31, 73.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Ferrándiz, J.M.: 1984, ‘Linearization in special cases of perturbed Keplerian motions’, (Submitted to Celest Mech.).Google Scholar
  5. Kustaanheimo, P., and E, Stiefel: 1965, J. Reine Angew Math. 218,204.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Levi-Civita, J.: 1956, ‘Sur la r/esolution qualitative du probleme restretint des trois corps’, Cpeve mathematiche, 2.Google Scholar
  7. Szebehely, V.: 1976, Long Time predictions in Dynamics, Szebehely and Tapley, ed., Reidel,pp. 17–42.Google Scholar
  8. Szebehely,V., and V. Bond: 1983, Celest Mech. 30, 59.MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • José M. Ferrándiz
    • 1
  • Ana Fernandez-Ferreirós
    • 1
  1. 1.DptQ de Mat. E.T.S. Ingenieros IndustrialesValladolidSpain

Personalised recommendations