Skip to main content

On the Coherence of Ultraweak Photonemission from Living Tissues

  • Chapter
Disequilibrium and Self-Organisation

Part of the book series: Mathematics and Its Applications ((MAIA,volume 30))

Abstract

At present it is generally accepted that all living systems exhibit a very weak photonemission of a few up to some hundred photons per second and square centimeter of surface area, ranging at least from ultraviolet to infrared. At a first view it appears likely that this “low-level luminescence” corresponds to a chaotic, spontaneous chemiluminescence. However, its temperature dependence and the manifold correlations to physiological and biological functions, as, for instance, radical reactivity, oxygen consumption, stress, cell proliferation and differentiation, biological rhythms, even DNA conformations, point to a regulatory activity of these “biological” photons (“biophotons”).

Moreover, a careful analysis of the decay behaviour of photonemission after exposure of the living tissue to external light-illumination indicates that “low level luminescence” orginates from an electromagnetic field with a surprisingly high degree of coherence, as compared to that of technical fields (laser). The basis of this conclusion, namely the results of photo count statistics as well as the relaxation dynamics within the framework of unstable quantum systems under ergodic conditions, is extensively discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kelner: Proc.nat.Acad.Sci. (Wash.) 35 (1949), 73.

    Article  ADS  Google Scholar 

  2. J. Setlow: ‘The Molecular Basis of Ultraviolet Radiation and Photo-reactivation’. In: Current Topics in Radiation Research, II (M. Ebert and A. Howard eds.), North-Holland Publishing Co., Amsterdam 1966.

    Google Scholar 

  3. D.P. Häder: ‘Photomovement’. In: Encyclopedia of Plant Physiology. New Series, Vol. 7 (W. Haupt and M.E. Feinleib eds.), pp. 268–309, Springer, Berlin 1979.

    Google Scholar 

  4. E. Bünning: The Physiological Clock. Third edition. Springer, Berlin 1973.

    Google Scholar 

  5. T.T. Karu, G.S. Kalendo, V.S. Letokhov, and V.V. Lobko: Nuovo Cimento 6 (1982), 828.

    Article  Google Scholar 

  6. P.P. Calmettes and W.M. Berns: Proc.Natl.Acad.Sci. USA 80 (1983), 7197.

    Article  ADS  Google Scholar 

  7. D. Slawinska and J. Slawinski: Photochem.Photobiol. 37 (1983), 709.

    Article  Google Scholar 

  8. A.I. Zhuravlev (ed.): Ultraweak Luminescence in Biology. Moscow Society of Naturalists, Moscos 1972.

    Google Scholar 

  9. H.H. Seliger: In: Chemilumenscence and Bioluminescence (M.J. Cormier, D.M. Hermes and J. Lee, eds.), Plenum Press, New York 1973.

    Google Scholar 

  10. A. Boveris, E. Cadenas, R. Reiter, M. Filipkowski, Y. Nakase, and B. Chance: Proc.Natl.Acad.Sci.USA 77 (1980), 347.

    Article  ADS  Google Scholar 

  11. E. Cadenas, H. Wefers, and H. Sies: Eur.J.Biochem. 119 (1981), 531.

    Article  Google Scholar 

  12. M. Rattemeyer, F.A. Popp, and W. Nagl: Naturwissensch. 68 (1981), 572.

    Article  ADS  Google Scholar 

  13. W.B. Chwirot, R.S. Dygdala, and S. Chwirot: Cytobios, accepted for publication.

    Google Scholar 

  14. F.A. Popp, K.H. Li, and W. Nagl: Z.Pflanzenphysiol. 114 (1984), 1.

    Google Scholar 

  15. F.A. Popp, B. Ruth, W. Bahr, J. Böhm, P. Graß, G. Grolig, M. Rattemeyer, H.G. Schmidt, and P. Wulle: Collective Phenomena 3 (1981), 187.

    Google Scholar 

  16. H. Precht, J. Christophersen, H. Hensel, and W. Larcher: Temperature and Life. Springer, Berlin 1973.

    Google Scholar 

  17. I. Milczarek, J. Slawinski, and E. Grabikowski: Zeszyty Naukowe Akademii Rolniczej w Szeczecinie 39 (1973), 249.

    Google Scholar 

  18. F.A. Popp: In: Electromagnetic Bio-Information (F.A. Popp, G. Becker, H.L. König, W. Peschka eds.), Urban & Schwarzenberg, München-Wien-Baltimore 1979.

    Google Scholar 

  19. F.A. Popp: In: Proceedings International Symposium on Analytical Applications of Bioluminescence and Chemiluminescence (E. Schram and P. Stanley eds.), Brussels 1978, State Printing & Publishing Inc., Westlake Village, California 1979.

    Google Scholar 

  20. J. Slawinski, E. Grabikowski, and L. Ciesla: J. Luminescence 24/25 (1981), 791.

    Article  ADS  Google Scholar 

  21. I. Prigogine: Pers.Communication.

    Google Scholar 

  22. D.F. Mandoli and W. Briggs: Proc.Natl.Acad.Sci. USA 79 (1982), 2902.

    Article  ADS  Google Scholar 

  23. F.A. Popp, W. Nagl, K.H. Li, W. Scholz, O. Weingärtnei, and R. Wolf: Cell Biophysics 6 (1984), 33.

    Google Scholar 

  24. V.V. Lobko, T. Karu, and V.S. Letokhov: Biofizika 30 (1985), 366.

    Google Scholar 

  25. W.B. Chwirot, R.S. Dygdala, and S. Chwirot: submitted for publication.

    Google Scholar 

  26. W. Nagl and F.A. Popp: Cytobios 37 (1983), 45; 71.

    Google Scholar 

  27. W.H. Louisell: Quantum Statistical Properties of Radiation. J. Wiley, New York 1973.

    Google Scholar 

  28. K.H. Li: Laser + Elektrooptik 13 (1981), 32.

    Google Scholar 

  29. F.A. Popp: ibid.,p.34.

    Google Scholar 

  30. K.H. Li, F.A. Popp, W. Nagl, and H. Klima: In: Coherent excitations in Biological Systems (H. Fröhlich and F. Kremer, eds.), Springer, Berlin-Heidelberg-N.Y. 1983.

    Google Scholar 

  31. F.A. Popp and W. Nagl: Polymer Bulletin 15 (1986), 89.

    Article  Google Scholar 

  32. H. Fröhlich: Int.J.Quantum Chem. 2 (1968), 641.

    Article  ADS  Google Scholar 

  33. I. Prigogine, G. Nicolis, and A. Babloyantz: Physics Today 11 (1972), 23.

    Article  Google Scholar 

  34. T.W. Wu and S. Austin: J.theor.Biol. 71 (1978), 209.

    Article  Google Scholar 

  35. R.K. Mishra, K. Bhaumik, S.C. Mathur, and S. Mitra: Int.J.Quantum Chem. 16 (1979) 691.

    Article  Google Scholar 

  36. K.H. Li: Physics of Open Systems. Rep.Prog.Phys. (1986), in press.

    Google Scholar 

  37. F.A. Popp: In: Information und Ordnung (G. Schaefer ed.), AulisVerlag, Köln 1984.

    Google Scholar 

  38. W. Nagl and F.A. Popp: Cytobios 37 (1983), 45; 71.

    Google Scholar 

  39. F.A. Popp: Biologie des Lichts. Paul Parey, Berlin 1984.

    Google Scholar 

  40. R.J. Glauber: In: Quantum 0ptics (R.J. Glauber ed.), Academic Press, New York 1969.

    Google Scholar 

  41. F.A. Popp and W. Nagl: Cell Biophysics, in press.

    Google Scholar 

  42. F.T. Arecchi: In: Quantum Optics (R.J. Glauber ed.), Academic Press, New York 1969.

    Google Scholar 

  43. J. Perina: Coherence of Light. Van Nostrand Reinhold Company, London 1971.

    Google Scholar 

  44. I. Ersak: Yad.Fiz. 9 (1969), 458.

    Google Scholar 

  45. L. Fonda, G.C. Ghirardi, and A. Rimini: Rep.Prog.Phys. 41 (1978), 587.

    Article  ADS  Google Scholar 

  46. E.B. Davies: Helv.Phys.Acta 48 (1975), 365.

    MathSciNet  Google Scholar 

  47. F.A. Popp: Proceedings of the ISG Conference on Selforganization and Dissipative Structures, London 1985, in press.

    Google Scholar 

  48. B. Misra and E.C.G. Sudarshan: J. Math.Phys. 18 (1977), 756.

    Article  MathSciNet  ADS  Google Scholar 

  49. C.B. Chiu, E.C.G. Sudarshan, and B.Misra: Phys.Rev. 16D (1977), 520.

    Google Scholar 

  50. A. Peres: Am.J.Phys. 48 (1980), 931.

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Bunge and A.J. Kalnay: Nuovo Cimento 77B (1983), 1.

    Google Scholar 

  52. W.B. Chwirot and S. Dygdala: Cytobios, accepted for publication.

    Google Scholar 

  53. D. Schamhart, A. Slawinski, and R. van Wijk: Cancer Res., in preparation.

    Google Scholar 

  54. B. Fain: Phys.Rev. 24A (1981), 933.

    Google Scholar 

  55. K.L. Ngai, A.K. Rajagopal, R.W. Rendell, and S. Teitler: Phys.Rev. 28B (1983), 6073.

    Google Scholar 

  56. K.L. Li and F.A. Popp: Phys.Lett. 93A (1983), 262.

    Google Scholar 

  57. F.A. Popp: Proc. on the Intern. Conference on Lasers ’85, Dec. 2–6, 1985, The Society of Optical & Quantum Electronics, Las Vegas, USA, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Popp, FA. (1986). On the Coherence of Ultraweak Photonemission from Living Tissues. In: Kilmister, C.W. (eds) Disequilibrium and Self-Organisation. Mathematics and Its Applications, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4718-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4718-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8598-4

  • Online ISBN: 978-94-009-4718-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics