Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 181))

Abstract

This chapter begins with a summary of general expressions derived from linear, non-equilibrium thermodynamic theory for one-dimensional transport across membranes. These expressions provide a framework for many of the transport analyses presented throughout the book, for example, those of the solution-diffusion type. Transport in homogeneous membranes is discussed briefly as the limiting case for pure diffusion. The remainder of the chapter reviews the hydrodynamic approach to modeling combined diffusive and convective transport in porous membranes. The model for uniform diameter, cylindrical pores is examined in enough detail to indicate the origin of predictions for the global thermodynamic transport coefficients in the limit of very dilute solutions of neutral spherical solutes. Extension to less dilute solutions, non-spherical, flexible and charged solutes is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kedem, O., and Katchalsky, A.: 1958, “Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.” Biochim. Biophys. Acta 27, pp. 229–246.

    Article  CAS  Google Scholar 

  2. Bresler, E.H., and Groome, L.J.: 1981, “On equations for combined convective and diffusive transport of neutral solute across porous membranes.” Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10), pp. F469–F476.

    CAS  Google Scholar 

  3. Patlak, C.S., Goldstein, D.A., and Hoffman, J.F.: 1963, “The flow of solute and solvent across a two-membrane system.” J. Theor. Biol. 5, pp. 426–442.

    Article  CAS  Google Scholar 

  4. Lightfoot, E.N.: 1974, “Transport Phenomena and Living Systems. Biomedical Aspects of Momentum and Mass Transport.” New York, J. Wiley, p. 178.

    Google Scholar 

  5. Bean, C.P.: 1972, “The physics of porous membranes—neutral pores,” in “Membranes, A Series of Advances, Vol. 1 Macroscopic Systems and Models.” G. Eisenman, ed. New York, M. Dekker, p. 1–54.

    Google Scholar 

  6. Bird, R.B., Stewart, W.E., and Lightfoot, E.N.: 1960, “Transport Phenomena.” New York, J. Wiley.

    Google Scholar 

  7. Fürth, R., and Cowper, A.D.: 1956, “Investigations on the Theory of the Brownian Movement by Albert Einstein.” Edited translation of articles in Annalen der Physik (1906) 19, pp. 289–306; (1911) 34, pp. 591–592.

    Google Scholar 

  8. Stein, W.D.: 1967, “The Movement of Molecules Across Cell Membranes.” New York, Academic Press.

    Google Scholar 

  9. Happel, J. and Brenner, H.: 1965, “Low Reynolds Number Hydrodynamics.” Englewood Cliffs, N.J., Prentice-Hall.

    Google Scholar 

  10. Bungay, P.M. and Brenner, H.: 1973, “Pressure drop due to the motion of a sphere near the wall bounding a Poiseuille flow.” J. Fluid Mech. 60, pp. 81–96.

    Article  Google Scholar 

  11. Anderson, J.L., and Quinn, J.A.: 1974, “Restricted transport in small pores: A model for steric exclusion and hindered particle motion.” Biophys. J. 14, pp. 130–150.

    Article  CAS  Google Scholar 

  12. Brenner, H., and Gaydos, L.J.: 1977, “The constrained Brownian movement of spherical particles in cylindrical pores of comparable radius: Models of the diffusive and convective transport of solute molecules in membranes and porous media.” J. Coll. Interface Sci. 58, pp. 312–356.

    Article  Google Scholar 

  13. Bungay, P.M. and Brenner, H.: 1973, “The motion of a closely-fitting sphere in a fluid-filled tube.” Int. J. Multiphase Flow 1, pp. 25–56.

    Article  Google Scholar 

  14. Anderson, J.L., and Malone, D.M.: 1974, “Mechanism of osmotic flow in porous membranes.” Biophys. J. 14, pp. 957–982.

    Article  CAS  Google Scholar 

  15. Curry, F.E.: 1974, “A hydrodynamic description of the osmotic reflection coefficient with application to the pore theory of transcapillary exchange.” Microvasc. Res. 8, pp. 236–252.

    Article  CAS  Google Scholar 

  16. Lightfoot, E.N., Bassingthwaighte, J.B. and Grabowski, E.F.: 1976, “Hydrodynamic models for diffusion in microporous membranes.” Ann. Biomed. Engng. 4, pp. 78–90.

    Article  CAS  Google Scholar 

  17. Lewellen, P.C.: 1982, “Hydrodynamic Analysis of Microporous Mass Transport.” Ph.D thesis, University of Wisconsin-Madison.

    Google Scholar 

  18. Levitt, D.G.: 1975, “General continuum analysis of transport through pores. I. Proof of Onsager’s reciprocity postulate for uniform pore.” Biophys. J. 15, pp. 533–551.

    Article  CAS  Google Scholar 

  19. Ganatos, P., Weinbaum, S., Fischbarg, J., and Liebovitch, L.: 1980, “A hydrodynamic theory for determining the membrane coefficients for the passage of spherical molecules through an intercellular cleft.” Adv. in Bioengng., Amer. Soc. Mech. Engrs., New York, pp. 193–196.

    Google Scholar 

  20. Hirschfeld, B.R., Brenner, H. and Falade, A.: 1984, “1st- and 2nd-order wall effects upon the slow viscous asymmetric motion of an arbitrarily-shaped, arbitrarily-positioned and arbitrarily-oriented particle within a circular-cylinder.” PhysicoChem. Hyd. 5 (2), pp. 99–133.

    CAS  Google Scholar 

  21. Wang, H. and Skalak, R.: 1969, “Viscous flow in a cylindrical tube containing a line of spherical particles.” J. Fluid Mech. 38, pp. 75–96.

    Article  Google Scholar 

  22. Paine, P.L. and Scherr, P.: 1975, “Drag coefficients for the movement of rigid spheres through liquid-filled cylindrical pores.” Biophys. J. 15, pp. 1087–1091.

    Article  CAS  Google Scholar 

  23. Smith III, F.G. and Deen, W.M.: 1980, “Electrostatic double-layer interactions for spherical colloids in cylindrical pores.” J. Colloid Interf. Sci. 78, pp. 444–465.

    Article  CAS  Google Scholar 

  24. Smith, F.G. and Deen, W.M.: 1983, “Electrostatic effects on the partitioning of spherical colloids between dilute bulk solution and cylindrical pores.” J. Colloid Interf. Sci. 91, pp. 571–590.

    Article  CAS  Google Scholar 

  25. Deen, W.M. and Smith III, F.G.: 1982, “Hindered diffusion of synthetic polyelectrolytes in charged microporous membranes.” J. Membrane Sci. 12, pp. 217–237.

    Article  CAS  Google Scholar 

  26. Anderson, J.L. and Brannon, J.H.: 1981, “Concentration dependence of the distribution coefficient for macromolecules in porous media.” J. Polymer Sci: Polymer Phys. Ed. 19, pp. 405–421.

    Article  CAS  Google Scholar 

  27. Glandt, E.D.: 1980, “Density distribution of hard-spherical molecules inside small pores of various shapes.” J. Colloid Interf. Sci. 77, pp. 512–524.

    Article  CAS  Google Scholar 

  28. Glandt, E.D.: 1981, “Distribution equilibrium between a bulk phase and small pores.” AIChE J. 27, pp. 51–59.

    Article  CAS  Google Scholar 

  29. Mitchell, B.D. and Deen, W.M.: 1984, “Theoretical effects of macromolecule concentration and charge on membrane rejection coefficients.” J. Membr. Sci. 19, pp. 75–100.

    Article  CAS  Google Scholar 

  30. Adamski, R.P. and Anderson, J.L.: 1983, “Solute concentration effect on osmotic reflection coefficient.” Biophys. J. 44, pp. 79–90.

    Article  CAS  Google Scholar 

  31. Anderson, J.L.: 1982, “Concentration effects on distribution of macromolecules in small pores.” Adv. Colloid Interf. Sci. 16, pp. 391–401.

    Article  CAS  Google Scholar 

  32. Friedman, M.H. and Meyer, R.A.: 1981, “Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions-I. Inequality of reflection coefficients for volume flow and solute flow.” Biophys. J. 34, pp. 535–544.

    Article  CAS  Google Scholar 

  33. Van Bruggen, J.T., Boyett, J.D., van Bueren, A.L. and Galey, W.R.: 1974, “Solute flux coupling in a homopore membrane.” J. Gen. Physiol. 63, pp. 639–656.

    Article  Google Scholar 

  34. Cussler, E.L.: 1976, “Multicomponent Diffusion.” Amsterdam, Elsevier Scientific Publ. Co.

    Google Scholar 

  35. Bresler, E.H., Mason, E.A. and Wendt, R.P.: 1976, “Appraisal of equations for neutral solute flux across porous sieving membranes.” Biophys. Chem. 4, pp. 229–236.

    Article  CAS  Google Scholar 

  36. Wendt, R.P., Mason, E.A. and Bresler, E.H.: 1976, “Effect of heteroporosity on flux equations for membranes.” Biophys. Chem. 4, pp. 237–247.

    Article  CAS  Google Scholar 

  37. Knierim, K.D., Waldman, M. and Mason, E.A.: 1984, “Bounds on solute flux and pore-size distributions for non-sieving membranes.” J. Membr. Sci. 17, pp. 173–203.

    Article  CAS  Google Scholar 

  38. Wendt, R.P., Klein, E., Bresler, E.H., Holland, F.F., Serina, R.M. and Villa, H.: 1979, “Sieving properties of hemodialysis membranes.” J. Membr. Sci. 5, pp. 23–49.

    Article  CAS  Google Scholar 

  39. Klein, E., Holland, F.F. and Eberle, K.: 1979, “Comparison of experimental and calculated permeability and rejection coefficients for hemodialysis membranes.” J. Membr. Sci. 5, pp. 173–188.

    Article  CAS  Google Scholar 

  40. Dagan, A., Weinbaum, S. and Pfeffer, R.: 1982, “An infinite series solution for the creeping motion through an orifice of finite length.” J. Fluid Mech. 115, pp. 505–523.

    Article  CAS  Google Scholar 

  41. Malone, D.M. and Anderson, J.L.: 1977, “Diffusional boundary-layer resistance for membranes with low porosity.” AIChE J. 23, pp. 177–184.

    Article  CAS  Google Scholar 

  42. Brunn, P.O.: 1984, “Interaction between pores in diffusion through membranes of arbitrary thickness.” J. Membr. Sci. 19, pp. 117–136.

    Article  CAS  Google Scholar 

  43. Davis, A.M.J., O’Neill, M.E. and Brenner, H.: 1981, “Axisymmetric Stokes flows due to a rotlet or stokeslet near a hole in a plane wall: filtration flow.” J. Fluid Mech. 103, pp. 183–205.

    Article  CAS  Google Scholar 

  44. Dagan, Z., Weinbaum, S. and Pfeffer, R.: 1982, “General theory for the creeping motion of a finite sphere along the axis of a circular orifice.” J. Fluid Mech. 117, pp. 143–170.

    Article  CAS  Google Scholar 

  45. Dagan, Z., Weinbaum, S. and Pfeffer, R.: 1982, “Theory and experiment on the three-dimensional motion of a freely suspended spherical particle at the entrance to a pore at low Reynolds number.” Chem. Engng. Sci. 38, pp. 583–596.

    Article  Google Scholar 

  46. Munch, W.D., Zestar, L.P. and Anderson, J.L.: 1979, “Rejection of polyelectrolytes from microporous membranes.” J. Membr. Sci. 5, pp. 77–102.

    Article  CAS  Google Scholar 

  47. Anderson, J.L.: 1981, “Configurational effects on the reflection coefficient for rigid solutes in capillary pores.” J. Theor. Biol. 90, pp. 405–426.

    Article  Google Scholar 

  48. Auvray, L.: 1981, «Solutions de macromolécules rigides: effets de paroi, de confinement et d’orientation par un écoulement,» J. Physique 42, pp. 79–95.

    CAS  Google Scholar 

  49. Long, J.D., Jacobs, D.L. and Anderson, J.L.: 1981, “Configurational effects on membrane rejection.” J. Membr. Sci. 9, pp. 13–27.

    Article  CAS  Google Scholar 

  50. Goldsmith, H.L. and Mason, S.G.: 1967, “The microrheology of dispersions.” In “Rheology: Theory and Applications,” vol. 4, Eirich, F.R. (ed.), New York, Academic Press, pp. 85–250.

    Google Scholar 

  51. Brenner, H.: 1966, “Hydrodynamic resistance of particles at small Reynolds number.” In “Advances, in Chemical Engineering,” vol. 6, New York, Academic Press, pp. 287–438.

    Google Scholar 

  52. Long, T.D. and Anderson, J.L.: 1984, “Flow-dependent rejection of polystyrene from micro-porous membranes.” J. Polymer Sci.: Polymer Phys. Ed. 22, pp. 1261–1281.

    Article  CAS  Google Scholar 

  53. Cannell, D.S. and Rondelez, F.: 1980, “Diffusion of polystyrenes through microporous membranes.” Macromolecules 13, pp. 1599–1602.

    Article  CAS  Google Scholar 

  54. Schultz, J.S., Valentine, R. and Choi, C.Y.: 1979, “Reflection coefficients of homopore membranes: Effect of molecular size and configuration.” J. Gen. Physiol. 73, pp. 49–60.

    Article  CAS  Google Scholar 

  55. Deen, W.M., Bohrer, M.P. and Epstein, N.B.: 1981, “Effects of molecular size and configuration on diffusion in microporous membranes.” A.I.Ch.E.J. 27, pp. 952–959.

    CAS  Google Scholar 

  56. Wong, J. and Quinn, J.A.: 1976, “Hindered diffusion of macromolecules in track-etched membranes.” In “Colloid and Interface Science,” vol. 5: “Biocolloids, Polymers, Monolayers, Membranes and General Papers,” Kerker, M. (ed.). New York, Academic Press, pp. 169–180.

    Google Scholar 

  57. Ph.D. thesis research under the supervision of Prof. J.A. Quinn, University of Pennsylvania, Yavorsky, D.Y.: 1981, “Static and hydrodynamic studies of the conformation of adsorbed macromolecules at the solid/liquid interface.” Rodilosso, P.D.: 1984, “Determination of the partition coefficient for macromolecules in porous media; Potential flows of mass and charge about solute obstacles in model membranes.”

    Google Scholar 

  58. Beck, R.E. and Schultz, J.S.: 1970, “Hindered diffusion in microporous membranes with known pore geometry.” Science 170, pp. 1302–1305.

    Article  CAS  Google Scholar 

  59. Beck, R.E. and Schultz, J.S.: 1972, “Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry.” Biochim. Biophys. Acta 255, pp. 273–303.

    Article  CAS  Google Scholar 

  60. Mason, E.A. and Viehland, L.A.: 1978, “Statistical-mechanical theory of membrane transport for multicomponent systems: Passive transport through open membranes.” J. Chem. Physics 68 (8): pp. 3562–3573.

    Article  CAS  Google Scholar 

  61. Renkin, E.M. and Curry, F.E.: 1979, “Transport of water and solutes across capillary endothelium.” In “Membrane Transport in Biology,” Vol. IVA, G. Giebisch et al. (eds.), Heidelberg, Springer-Verlag, pp. 1–45.

    Google Scholar 

  62. Crone, C. and Christensen, O.: 1979, “Transcapillary transport of small solutes and water.” In “International Review of Physiology, Cardiovascular Physiology III”, Vol. 18, Guyton, A.C. and Young, D.B. (eds.), Baltimore, University Park Press, pp. 149–213.

    Google Scholar 

  63. Curry, F.E.: 1984, “Mechanics and thermodynamics of transcapillary exchange.” In “Handbook of Physiology,” Sect. 2, “The Cardiovascular System,” Vol. 4, “Microcirculation,” Ch. 8, pp. 309–374.

    Google Scholar 

  64. Matson, S.L. and Quinn, J.A.: 1977, “Knudsen diffusion through non-circular pores: Textbook errors.” A.I.Ch.E.J. 23, pp. 768–770.

    CAS  Google Scholar 

  65. Mason, E.A. and Malinauskas, A.P.: 1983, “Gas Transport in Porous Media: The Dusty-Gas Model.” Amsterdam, Elsevier Scientific Publ. Co.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Bungay, P.M. (1986). Transport Principles - Porous Membranes. In: Bungay, P.M., Lonsdale, H.K., de Pinho, M.N. (eds) Synthetic Membranes: Science, Engineering and Applications. NATO ASI Series, vol 181. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4712-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4712-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8596-0

  • Online ISBN: 978-94-009-4712-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics