Skip to main content

Microprocessor-Based Data Reduction and Compression Systems

  • Chapter
Microprocessor-Based Control Systems

Abstract

Data compression and reduction is used whenever a large amount of data values need to be stored and processed many times before transmission [1–18]. The advantages that are offered by data compression/reduction include: (i) storage saving (since less coefficients/points of smaller word length need to be stored for representing the waveform, (ii) computing time saving (since data reduction can take place simultaneously with data acquisition and processing requirements are reduced), (iii)data processing in real time (using the reduced/compressed data).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Pavlidis, “Structural Pattern Recognition”, Springer, New York(1977).

    MATH  Google Scholar 

  2. Y. Kurozumi and W. Davis, “Polygonal Approximation by the Minimax Method”, Computer Graphics and Image Processing, Vol. 12, 248–264 (1982).

    Article  Google Scholar 

  3. J. Sklansky and V. Gonzalez, “Fast Polygonal Approximation of digitized curves”, Pattern Recognition, Vol. 12, 327–331, (1980).

    Article  Google Scholar 

  4. V. Gonzalez and J. Sklansky, “Fast Polygonal Approximations of digitized signals”, TP-79,14, School of Engineering, University of California, Irvine (1979).

    Google Scholar 

  5. G. Frangakls and G. Papakonstantinou, “A Real Time Reduction Microcomputer System” in Methods and Applications of Measurement and Control (MECO–83) S. Tzafestas and M. Hamza, Eds), Vol. 2, 606–608, ACTA Press, (1984).

    Google Scholar 

  6. F. Gritzali and G. Papakonstantinou, “A Fast Piecewise Linear Approximation Algorithm” Signal Processing, Vol. 5, 221–227 (1983).

    Article  Google Scholar 

  7. I. Tomek, “Two Algorithms for Piecewise Linear Continuous Approximations of Functions of one variable”, IEEE Trans Compute, C-23,445–448 (1974).

    Article  MATH  Google Scholar 

  8. C. Williams, An Efficient Algorithm for the Piecewise Linear Approximation of Planar Curves, Computer Graphics and Image Processing, Vol. 8, 286–293, (1978).

    Article  Google Scholar 

  9. G. Papakonstantinou,Optimal Polygonal Approximation of Digital Curves, Signal Processing,Vol. 8, 131–135 (1985).

    Article  Google Scholar 

  10. G. Benelli, V. Gappellini and F. Lotti, Data compression techniques and applications, The Radio and Electronic Eng., Vol. 50, No.1/2, Jan./Feb. 1980, pp. 29–53.

    Article  Google Scholar 

  11. T. Berger, Rate distortion theory–A mathematical basis for data compression (Prentice Hall, Englewood Cliffs, N.J., 1971 ).

    Google Scholar 

  12. L.D. Davisson, The theoretical analysis of data compression systems; Proc. IEEE, Vol. 56, No. 2, Feb. 1968, pp. 176–186.

    Article  Google Scholar 

  13. L.D. Davisson, Theory of adaptive data compression, in “Advances in Communication”Vol. 2 ( Academic Press, New York, 1966 ).

    Google Scholar 

  14. N. Ahmed, P.J. Milne and S.G. Harris, Electrocardiographic data compression via orthogonal transforms, IEEE Trans.Biom.Eng., Vol.BME- 22, No. 6, Nov. 1975, pp. 484–4–87.

    Article  Google Scholar 

  15. W.S. Kuklinski, Fast Walsh transform data-compression algorithm: ecg applications, Med. and Biol.Eng. and ComputeVol. 21, 1983, pp. 46 5–472.

    Google Scholar 

  16. J.H. VanBemmel and J.L. Willems (Eds), Trends in Computer-processed electrocardiographs, (North-Holland, Amsterdam,1977).

    Google Scholar 

  17. T. Shibahara et al., CCA-A knowledge based system with causal knowledge to diagnose rhythm disorders in the heart, Proc.Int.Conf. CSCSI/SCEIO, 1982, pp. 71–78.

    Google Scholar 

  18. A. Lestenberg and Kunt M., A robust-digital QRS-detection algorithm for arrythmia monitoring, Comp. and Biomed. Research, Vol. 16, 1983, pp. 273–286.

    Article  Google Scholar 

  19. M.L. Ahlstrom and W.J. Tomkins, Automated high-speed analysis of Holter tapes with microcomputers, IEEE Trans.Biom.Eng., Vol.BME- 30, No. 10, 1983, pp. 651–657.

    Article  Google Scholar 

  20. G. Frangakis, Digital and yP-Based Techniques in Signal Processing and System Simulation, Ph.D. Thesis, Southampton Univ. (1985).

    Google Scholar 

  21. B.H. Jansen, J.R. Bourne and J.W. Ward, Spectral decomposition of e.c.g. intervals using Walsh and Fourier transforms, IEEE Trans. Biom.Eng., Vol. BME-28, 1981, pp. 836–838.

    Article  Google Scholar 

  22. B.W. Weide, L.T. Andrews and A.M. Tannone, Real-time analysis of e.c.g. using Walsh transforms, Comput.Biol.Med., Vol. 8, 1978, pp. 225–263.

    Article  Google Scholar 

  23. M.E. Womble et al, Data compression for storage and transmitting e.c.g.s./v.c.g.s., Proc. IEEE, Vol. 65, 1977, pp. 702–706.

    Article  Google Scholar 

  24. H. Harmuth, Transmission of information by orthogonal functions (Springer, 1969 ).

    MATH  Google Scholar 

  25. R. Lackey, The wonderful world of Walsh functions, Proc.1972 Syrnp. on Appl. of Walsh functions, The Catholic Univ. of America, Washington D.C., pp. 2–7 (1972).

    Google Scholar 

  26. C. Chen, and C. Hsiao, Walsh series analysis In optimal control, Int.J. Control, Vol. 21, pp. 881–897 (1975).

    Article  MATH  Google Scholar 

  27. P. Stavroulakis and S. Tzafestas, Walsh series approach to observer and filter design in optimal control systems, Int.J. Control, Vol. 26, pp. 721–736, (1977).

    MathSciNet  MATH  Google Scholar 

  28. S. Tzafestas, Walsh series approach to lumped and distributed system Identification, J.Franklin Inst., Vol. 305, pp. 199–220, (1978).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Campanella and G. Robinson, A comparison of orthogonal transformations for digital speech processing, IEEE Trans, on Comrnun., Vol. COM-19, pp. 1045–1050 (1971).

    Article  Google Scholar 

  30. E. Frangoulis and L. Turner, Speech coding by the Hadamard-Haar transform. Computers and Digital Techniques, Vol.1,pp. 106–112, (1978).

    Article  Google Scholar 

  31. Y. Shum, A. Elliot and W. Brown, Speech processing with Walsh-Hadamard transforms, IEEE Trans, on Audio and Electroacoustics, Vol. AU-21, pp. 174–179, (1973).

    Article  Google Scholar 

  32. E. Frangoulis and L. Turner, Hadamard-Transformation Technique of Speech Coding: Some further Results, Proc.IEE, pp. 845–852, (Oct. 1977).

    Google Scholar 

  33. J.E. Whechel and D.F. Guinn, The fast Fourier-Hadamard transform and Its use in signal representation and classification, EASCON’ 68 Reo., 1968, pp. 561–573.

    Google Scholar 

  34. J.L. Shanks, Computation of the fast Walsh-Fourier transform, IEEE Trans.Comput., Vol.C. 18, May 1969, pp. 457–459.

    Article  MATH  Google Scholar 

  35. K.W. Lindenberg, A Sequency-ordered in-place fast Walsh transform algorithm, Proc.San Diego Biomedical Syrrrp., V13, 1974, pp. 495–498.

    Google Scholar 

  36. J.W. Manz, A sequency ordered fast Walsh transform, IEEE Trans.Audio Electroacoust., Vol. AU-20, 1972, pp. 204–205.

    Google Scholar 

  37. H. Larsen, An algorithm to compute the sequency ordered Walsh transform, IEEE, Trans. Acoust., Speech, and Signal Processing, Aug. 1976, pp. 335–336.

    Google Scholar 

  38. R.D. Brown, A recursive algorithm for sequency-ordered fast Walsh transforms, IEEE Trans.on Computers, Vol. C-26, 1977, pp. 819–823.

    Article  MATH  Google Scholar 

  39. S.H. Fuller et al., Multi-Microprocessors: An overview and working example, Proc.IEEE, Vol. 6, No. 2, Feb. 1978, pp. 216–218.

    Article  MathSciNet  Google Scholar 

  40. Ramamoorthy et al., Hardware-software issues in multimicroprocessor computer architectures, Proc.Microcomputers, Fort Collins, Colo., Aug.-Sept. 1977, pp. 73–79.

    Google Scholar 

  41. P.H. Enslow, Multiprocessor organization, A survey, Computing surveys, Vol. 9, No. 1, March 1977, pp. 103–129.

    Article  MATH  Google Scholar 

  42. L.H. Anderson, The microcomputer as distributed intelligence, Proc. Int. Syrrrp. Circuits and Systems, Boston, Mass., April 1975, pp. 337–340.

    Google Scholar 

  43. M. Krieger, Task driven multimicroprocessor system, Proc. 1st Canadian Workshop Design and Develop, of Computer Systems, May 1979, pp. 81–88.

    Google Scholar 

  44. B.A. Bowen and R.J.A. Buhr, The logical design of multiple microprocessor systems (Prentice Hall, Englewood Cliffs, N.J.,1980).

    MATH  Google Scholar 

  45. E.T. Fathi and M. Krieger, Multiple Microprocessor systems: What, Why, and When, Computer, March 1983, pp. 23–32.

    Google Scholar 

  46. S. Tzafestas, G. Frangakis and Pimenidls T., Global Walsh function generators, Electronic Engineering, 19 76, pp. 45–49.

    Google Scholar 

  47. R. Kitai, Synthesis of Periodic sinusoids from Walsh waves, IEEE Trans. on Instr. andMeasur., Vol. IM24, pp. 313–317.

    Google Scholar 

  48. W.O. Brown and A.R. Elliot, IEEE Proc. Syrrrp. Applications of Walsh functions, Wahsington, D.C., AD7444650, 1972.

    Google Scholar 

  49. S. Tzafestas, G. Frangakis, A fast Walsh Hadamard signal processing system, Mathematics and Computers in Simulation, Vol. 23, 1981, pp. 163–169.

    Article  Google Scholar 

  50. H. Larsen, An algorithm to compute the sequency ordered Walsh transform, IEEE Trans.Acoust., Speech and Signal Processing, Vol. 24, 1976, pp. 335–336.

    Article  Google Scholar 

  51. DCE Microcomputer Systems Designer’s Handbook, Data Applications International S.A., Bruxelles 1977.

    Google Scholar 

  52. J.L. Willems et al, Common standards for quantitative electrocardio graphy, The CSE pilot study, Proc. Medical Informatics Europe 81 (F. Cremy et al, eds) Springer-Verlag, Berlin, pp. 319–326, 1981.

    Google Scholar 

  53. J. Sarris, A microcomputer card for AID convertion, Tech. Report, National Technical University of Athens, Computer Science Division, Athens, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Tzafestas, S., Papakonstantinou, G. (1986). Microprocessor-Based Data Reduction and Compression Systems. In: Sinha, N.K. (eds) Microprocessor-Based Control Systems. International Series on Microprocesssor-Based Systems Engineering, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4708-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4708-5_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8594-6

  • Online ISBN: 978-94-009-4708-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics