Skip to main content

Feedback Linearization Techniques in Robotics and Power Systems

  • Chapter
Algebraic and Geometric Methods in Nonlinear Control Theory

Part of the book series: Mathematics and Its Applications ((MAIA,volume 29))

Abstract

A constant matrix, bi constant vector fields, are used to approximate nonlinear systems in neighborhoods of equilibrium points. The original nonlinear model is takeQ into account when a precise control is required and non-linearities significantly affect the desired dynamic behaviour. This is the case for instance in the design of autopilots for highperformance aircrafts ([30], [31]), in space-craft attitude control [14], in the feedback control of high-speed, high-precision robot arms [7], in the stabilization of electric power systems and in the regulation of electric machines [23]. To this purpose adaptive control schemes and more recently geometric nonlinear control techniques have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P. M., Fouad, A. A., ‘Power system control and stability,’ Iowa State University Press, Ames, 1977.

    Google Scholar 

  2. Balestrino A., De Maria G., Zinober A.S.I., ‘Nonlinear adaptive model following control,’ Automatica, vol. 20, 5, 559–568, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  3. Balestrino G., De Maria G., Sciavicco L., ‘Hyperstable adaptive model following control of nonlinear plants,’ System and Control Letters, vol. 1, 232–236, 1982.

    Article  MATH  Google Scholar 

  4. Balestrino G., De Maria G., Sciavicco L., ‘An adaptive model following control for robotic manipulators,’ Trans, ASME J. Dyn. Syst. Meas. Control, vol. 105, 1983.

    Google Scholar 

  5. Boothby W.M., ‘Some comments on global linearization of nonlinear systems,’ System of Control Letters, vol. 4, 143–147, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  6. Boothby, W. M. ‘Global feedback linearizability of locally linearizable systems,’ this volume.

    Google Scholar 

  7. Brady M., Hollerbach J., Johnson T., Lozano-Perez T., Mason M. eds., Robot Motion, Planning and Control. MIT Press, 1982.

    Google Scholar 

  8. Brockett, R.W., ‘Feedback invariants for nonlinear systems,’ IFAC Congress, Helsinki, 1115–1120, 1978.

    Google Scholar 

  9. Cesareo G., Marino R., ‘Nonlinear control theory and symbolic algebraic manipulation,’ MTNS ’83, Beer Sheva, Israel; Lecture Notes in Control and Inf. Sci., no, 58, 725–740, Springer Verlag, 1984.

    Google Scholar 

  10. Cesareo G., Marino R., ‘On the application of computer algebra to nonlinear control theory,’ EUROSAM Conf. Cambridge U.K.: Lecture Notes in Comp. Sci., no. 174, 35–46, Springer Verlag, 1984.

    Google Scholar 

  11. Cesareo G., Marino R., ‘The use of symbolic computation for power system stabilization: an example of computer-aided design,’ INRIA Conf, Nice ’84; Lecture Notes in Control and Inf. Sci., vol. 63, 598–611, Springer Verlag, 1984.

    Google Scholar 

  12. Cheng, D., Tarn T.J., Isidori A., ‘Global feedback linearization of nonlinear systems,’ 23rd CDD Conference, Las Vegas, 74–83, 1984.

    Google Scholar 

  13. Dayawansa, W., Boothby, W. M., Elliott, D. L., ‘Global state and feedback equivalence of nonlinear systems,’ System and Control Letters, vol. 6, 229–234, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dwyer, T. A. W., ‘Exact nonlinear control of large angle rotational maneuvers,’ IEEE Trans. Autom. Control. Vol. 29, 9, 769–774, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hunt L.R., Su R., Meyer G., ‘Design for multi-input nonlinear systems,’ Diff, Geo, Control Theory, Brockett R., Millmann R., Sussmann H. Eds., 268–298, Birkhäuser, 1983,

    Google Scholar 

  16. Hunt L.R., Su R., Meyer G., ‘Global transformations of nonlinear systems,’ IEEE Trans. Autom. Control, vol. AC-27, 1982.

    Google Scholar 

  17. Krener, A. J., ‘On the equivalence of control systems and linearization of nonlinear systems,’ SIAM J. Control and Opt., vol. 11, 670–676, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  18. Krener A.J., Isidori A., Respondek W., ‘Partial and robot linearization by feedback,’ Proc. 22nd IEEE Conf. on Decision and Control, 126–130, 1983.

    Google Scholar 

  19. Krener, A. J., ‘Approximate linearization by state feedback and coordinate change,’ System and Control Letters, vol. 5, 181–185, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  20. Jakubczyk B., Respondek W., ‘On linearization of control systems,’ Bull. Acad. Pol. Sci., Ser. Sci. Math., vol. 28, 517–522, 1980.

    MathSciNet  MATH  Google Scholar 

  21. Irving, E., Barrett, J. P., Charcossey, C., Monville, J., ‘Improving power network stability and unit stress with adaptive generator control,’ Automatica, vol. 15, 31–46, 1979.

    Article  MATH  Google Scholar 

  22. Isidori, A., Krener, A. J., Monaco, S., Gori-Giorgi, C., ‘Nonlinear decoupling via feedback: a differential geometric approach,’ IEEE Trans, Autom. Control, vol. 26, 331–345, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  23. Marino R., ‘Feedback equivalence of nonlinear systems with applications to power system equations,’ Doctoral Dissertation, Washington University, St. Louis, MO, 1982.

    Google Scholar 

  24. Marino R., Nicosia S., ‘Linear model following control and feedback equivalence to linear controllable systems,’ Int. J. of Control, vol. 39, 3, 473–485, 1984.

    Article  MATH  Google Scholar 

  25. Marino R., ‘On the stabilization of power systems with a reduced number of controls,’ INRIA Conf. Nice ’84; Lecture Notes in Control and Inf. Sci., vol. 62, 259–274, Springer Verlag, 1984.

    Google Scholar 

  26. Marino, R., “On the largest feedback linearizable subsystem,” to appear in System and Control Letters.

    Google Scholar 

  27. Marino, R., ‘An example of nonlinear regulator,’ IEEE Trans. Autom. Control, vol. 29, 3, 276–279, 1984.

    Article  MATH  Google Scholar 

  28. Marino, R., Boothby, W. M., Elliott, D. L., ‘Geometric properties of linearizable control systems,’ Mathematical Systems Theory, vol. 18, 97–123, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  29. Marino, R., Ilic-Spong, M., ‘Stabilization and voltage regulation of electric power systems with (P,Q) load buses preserved,’ Proc. Conference on Decision and Control, Fort Lauderdale, Florida, 1985.

    Google Scholar 

  30. Meyer G., Cicolani L., ‘Applications of nonlinear system inverses to automatic flight control design-system concepts and flight evaluations,’ Agardograph 251 on Theory and Applications of Opt. Control Aero. Systems, P. Kant ed., 1980.

    Google Scholar 

  31. Meyer, G., Su, R., Hunt, L. R., “Application of nonlinear transformations to automatic flight control,” Automatica, vol. 20, 1, 103–107, 1984.

    Article  MATH  Google Scholar 

  32. Nicosia S., Tomei P., ‘Model reference adaptive control algorithms for industrial robots,’ Automatica, 20, 5, 635–644, 1984.

    Article  MATH  Google Scholar 

  33. Respondek, W., ‘Global aspects of linearization equivalence to polynomial forms and decomposition of nonlinear control systems,’ this volume.

    Google Scholar 

  34. Respondek W., to appear in Proc. MTNS ’85 Conference, Stockholm, June 85, C. Byrnes and A. Lindquist eds., Elsevier, Amsterdam.

    Google Scholar 

  35. Su, R., ‘On the linear equivalence of nonlinear systems,’ System and Control Letters, vol. 2, 48–52, 1982.

    Article  MATH  Google Scholar 

  36. Su, R., Meyer, G., Hunt, L. R., ‘Robustness in nonlinear control,’ Differential Geometric Control Theory Conference, Birkhäuser, Boston, R. W. Brockett, R. S. Milemann, H. J. Sussmann, Eds., vol. 27, 316–337, 1983.

    Google Scholar 

  37. Utkin U.I., Sliding Modes and their Applications in Variable Structure Systems. MIR Moscow (English translation), 1978.

    Google Scholar 

  38. Van der Schaft, A. J., ‘Linearization and input-output decoupling for general nonlinear systems,’ System & Control Letters, vol. 5, 27–33, 1984.

    Article  MATH  Google Scholar 

  39. Young K.K.D., ‘Design of variable structure model following control systems,’ IEEE Trans. Autom. Control, vol. AC-23, 1079–1085, 1978.

    Article  Google Scholar 

  40. Zaborszky, J., Whang, K. W., Prasad, K. V., Katz, I. N., ‘Local feedback stabilization of large interconnected power systems in emergencies,’ Automatica, no. 17, vol. 5, 673–686, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Marino, R. (1986). Feedback Linearization Techniques in Robotics and Power Systems. In: Fliess, M., Hazewinkel, M. (eds) Algebraic and Geometric Methods in Nonlinear Control Theory. Mathematics and Its Applications, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4706-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4706-1_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8593-9

  • Online ISBN: 978-94-009-4706-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics