Skip to main content

Global Aspects of Linearization, Equivalence to Polynomial Forms and Decomposition of Nonlinear Control Systems

  • Chapter
Algebraic and Geometric Methods in Nonlinear Control Theory

Part of the book series: Mathematics and Its Applications ((MAIA,volume 29))

Abstract

In the last fifteen years a theory for nonlinear control systems has been developed using differential geometric methods. Many problems have been treated in this fashion and interesting results have been obtained for nonlinear equivalence, decomposition, controllability, observability, optimality, synthesis of control (with desired properties: decoupling or noninteracting), linearization and many others. We refer the reader to Sussmann [28] for a survey and bibliography. We want to emphasize only that in most of the papers devoted to nonlinear control systems (using geometric methods) only a local viewpoint is presented. This is due to two kinds of obstructions: singularities of the studied objects (functions, vector fields, distributions) and topological obstructions for the global existence of the sought solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aeyels, ‘Local and global controllability for nonlinear systems’, Systems and Control Letters, 5(1984), 19–26.

    Article  MathSciNet  MATH  Google Scholar 

  2. W.M. Boothby, ‘Some comments on global linearization of nonlinear systems’, Systems and Control Letters, 4(1984), 143–147.

    Article  MathSciNet  MATH  Google Scholar 

  3. W.M. Bothby, ‘Global feedback linearizability of locally linearizable systems’, this volume.

    Google Scholar 

  4. R.W. Brockett, ‘Feedback invariants for nonlinear systems’ in: Proc. IFAC Congress, Helsinki 1978.

    Google Scholar 

  5. P. Brunovsky, ‘A classification for linear controllable systems’, Kybernetica, 6(1970), 173–188.

    MathSciNet  MATH  Google Scholar 

  6. W. Dayawansa, W.M. Boothby and D.L. Elliot, ‘Global state and feedback equivalence of nonlinear systems’, Systems and Control Letters, 6(1985), 229–234.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Fliess, ‘Cascade decomposition of nonlinear systems, foliations and ideals of transitive Lie algebras’, to appear in Systems and Control Letters.

    Google Scholar 

  8. M. Fliess, ‘Décomposition en cascades des systèmes automatiques et feuilletages invariants’, to appear in Bull. Soc. Math. France.

    Google Scholar 

  9. J.W. Grizzle and S.I. Marcus, ‘The structure of nonlinear control systems possessing symmetries’, to appear in IEEE Trans. Automat. Contr.

    Google Scholar 

  10. R. Hermann, ‘On the accessibility problem in control theory’, Internat. Symp. on Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963, 325–332.

    Google Scholar 

  11. R. Hermann and A.J. Krener, ‘Nonlinear controllability and observability’, IEEE Trans. Automat. Contr., 12 (1977), 728–740.

    Article  MathSciNet  Google Scholar 

  12. R. Hirschorn, ‘Global controllability of nonlinear systems’, SIAM J. Contr. Opt., 14(1976), 700–711.

    Article  MathSciNet  MATH  Google Scholar 

  13. L.R. Hunt and R. Su, ‘Linear equivalents of nonlinear time varying systems’, Int. Symp. Math. Theory of Networks and Systems, Santa Monica, 1981.

    Google Scholar 

  14. L.R. Hunt, R. Su and G. Meyer, ‘Global transformations of nonlinear systems’, IEEE Trans. Automat. Contr., 28 (1983)

    Google Scholar 

  15. A. Isidori, A.J. Krener, C. Gori-Giorgi and S. Monaco, ‘Nonlinear decoupling via feedback: A differential geometric approach’, IEEE Trans. Automat. Contr., 26 (1981), 331–345.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Jakubczyk and W. Respondek, ‘On linearization of control systems’, Bull. Acad. Polon. Sci, Ser. Sci. Math., 28(1980), 517–522.

    MathSciNet  MATH  Google Scholar 

  17. A.J. Krener, ‘On the equivalence of control systems and linearization of nonlinear systems’, SIAM J. Contr. Opt., 11 (1973), 670–676.

    Article  MathSciNet  MATH  Google Scholar 

  18. A.J. Krener, ‘A decomposition theory for differentiable systems’, SIAM J. Contr. Opt. 15 (1977), 813–829.

    Article  MathSciNet  MATH  Google Scholar 

  19. A.J. Krener and A. Isidori, ‘Linearization by output injection and nonlinear observers’, Systems and Control Letters, 3 (1983), 47–52.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.J. Krener and W. Respondek, ‘Nonlinear observers with linearizable dynamics’, SIAM J. Control. Opt., 23 (1985), 197–216.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Kunita, ‘On the controllability of nonlinear systems with applications to polynomial systems’, Appl. Math. Optim, 5(1979), 89–99.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Levine and R. Marino, Quelques applications des méthodes géometriques aux problèmes stochastiques, “last minute result” presented at the Conference on the Algebraic and Geometric Methods in Non-linear Control Theory, Paris ’85.

    Google Scholar 

  23. T. Nagano, ‘Linear differential systems with singularities and application to transitive Lie algebras’, J. Math. Soc. Japan, 18 (1966), 398–404.

    Article  MathSciNet  MATH  Google Scholar 

  24. R.S. Palais, ‘A globar formulation of the Lie theory of transformation groups’, Amer. Math. Soc. (1957), no. 22.

    Google Scholar 

  25. W. Respondek, ‘On decomposition of nonlinear control systems’, Systems and Control Letters, 1 (1982), 301–308.

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Respondek, ‘Geometric methods in linearization of control systems, in: Banach Center Publications, vol. 14, Mathematical Control Theory, Eds. Cz. Olech, B. Jakubczyk and J. Zabczyk, PWN-Polish Scientific Publishers, Warsaw, 1985, 453–467.

    Google Scholar 

  27. R. Su, ‘On the linear equivalents of nonlinear systems’, Systems and Control Letters, 2 (1982), 48–52.

    Article  MathSciNet  MATH  Google Scholar 

  28. H.J. Sussmann, ‘Lie brackets, real analyticity and geometric control’ in: Differential Geometric Control Theory, Eds. R.W. Brockett, R.S. Millman and H.J. Sussmann, Birkhauser, Boston, 1983, 1–116.

    Google Scholar 

  29. H.J. Sussmann, ‘An extension of a theorem of Nagano on transitive Lie algebras’, Proc. Amer. Math. Soc., 45 (1974), 349–356.

    Article  MathSciNet  MATH  Google Scholar 

  30. H.J. Sussmann, ‘A generalization of the closed subgroup theorem to quotionts of arbitrary manifolds’, J. Differential Geometry, 10 (1975), 151–166.

    MathSciNet  MATH  Google Scholar 

  31. H.J. Sussmann, ‘Existence and uniqueness of minimal realization of nonlinear systems’, Math. Systems Theory, 10 (1977), 263–284.

    Article  MathSciNet  Google Scholar 

  32. H.J. Sussmann, Lie bracketes and real analyticity in control theory, in: Banach Center Publications, vol.14, Mathematical Control Theory, Eds. Cz. Olech, B. Jakubczyk and J. Zabczyk, PWN-Polish Scientific Publishers, Warsaw, 1985, 515–542.

    Google Scholar 

  33. M. Zeitz, Controllability canonical (phase-variable) form for non-linear time-variable systems, Int.J. Control, 37 (1983), 1449–1457.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Respondek, W. (1986). Global Aspects of Linearization, Equivalence to Polynomial Forms and Decomposition of Nonlinear Control Systems. In: Fliess, M., Hazewinkel, M. (eds) Algebraic and Geometric Methods in Nonlinear Control Theory. Mathematics and Its Applications, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4706-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4706-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8593-9

  • Online ISBN: 978-94-009-4706-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics