Skip to main content

Fuzzy Set Theory and Mathematical Programming

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 177))

Abstract

Mathematical programming is one of the areas to which fuzzy set theory has been applied extensively. Primarily based on Bellman and Zadeh’s model of decision in fuzzy environments, models have been suggested which allow flexibility in constraints and fuzziness in the objective function in linear and nonlinear programming. This paper surveys major models and theories in this area and offers some indication on future developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.A. Behringer, Lexicographic quasiconcave multiobjective programming, Z. Oper. Res. 21:103–116 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  2. F.A. Behringer, A simplex based algorithm for the lexicographically extended linear maxmin problem, European J. Oper. Res. 7: 274–283 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  3. R.E. Bellman and L.A. Zadeh; Decision-making in a fuzzy environment, Management Science 17: B141–164 (1970).

    Article  MathSciNet  Google Scholar 

  4. S. Ghanas, The use of parametric programming in fuzzy linear programming, Fuzzy Sets and Systems 11: 243–251 (1983).

    Article  Google Scholar 

  5. L.L. Chang, Interpretation and execution of fuzzy programs, in (L.A. Zadeh et al., Eds.), 1975, pp. 191–218.

    Google Scholar 

  6. L. Fabian and M. Stoica, Fuzzy integer programming, in (H.-J. Zimmermann et al., Eds.), 1984, pp. 123–132.

    Google Scholar 

  7. H. Hamacher, H. Leberling and H.-J. Zimmermann, Sensitivity analysis in fuzzy linear programming, Fuzzy Sets and Systems 1:269–281(1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Hamacher, Über logische Aggregationen nicht binär expliziter Entscheidungskriterien, Frankfurt/Main, 1978.

    Google Scholar 

  9. E.L. Hannan, Linear progrmaming with multiple fuzzy goals, Fuzzy Sets and Systems 6:235–248(1981).

    Article  MathSciNet  MATH  Google Scholar 

  10. H.W. Kuhn and A.W. Tucker, Nonlinear Programming, in Proceedings of 2nd Berkeley Symposium on mathematical Statistics and Probability (J. Neyman, Ed., 1951.

    Google Scholar 

  11. H. Leberling, On finding compromise solutions in multicriteria problems using the fuzzy min-operator. Fuzzy Sets and Systems 6: 105–118 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Leberling, Entscheidungsfindung bei divergierenden Faktorinteressen und relaxierten Kapazitätsrestriktionen mittels eines unscharfen Lösungsansatzes, Z. Betriebs. Forsch. 35: 398–419 (1983).

    Google Scholar 

  13. M.K. Luhandjula, Linear programming under randomness and fuzziness, Fuzzy Sets and Systems 10: 45–55 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  14. M.K. Luhandjula, Fuzzy approaches for multiple objective linear fractional optimization, Fuzzy Sets and Systems 13:11–24 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Nakamura, Some extension of fuzzy linear progrramming, Fuzzy Sets and Systems, to appear

    Google Scholar 

  16. S.A. Orlovski, On programming with fuzzy constraint sets, Kybernetes 6: 197–201 (1977).

    Article  Google Scholar 

  17. W. Ostasiewicz, A new approach to fuzzy programming, Fuzzy Sets and Systems 7: 139–152 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Rödder and H.-J. Zimmermann, Analyse, Beschreibung und Optimierung von unscharf formulierten Problemen, Z. Oper. Res. 21: 1–18 (1977).

    Article  MATH  Google Scholar 

  19. W. Rödder and H.-J. Zimmermann, Duality in fuzzy linear programming, in Extremal Methods and Systems Analyses (A.V. Fiacco and K.O. Kor-tanek, Eds.), New York, 1980, pp. 415–429.

    Google Scholar 

  20. P.A. Rubin and R. Narasimhan, Fuzzy goal programming with rested priorities, Fuzzy Sets and Systems 14: 115–130 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Tanaka and K. Asai, Fuzzy linear programming problems with fuzzy numbers, Fuzzy Sets and Systems 13:1–10 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Tanaka and M. Mizumoto, Fuzzy programs and their execution, in (L.A. Zadeh et al., Eds.), 1975, pp. 41–76.

    Google Scholar 

  23. H. Tanaka, T. Okuda, and K. Asai, on fuzzy mathematical programming, J. Cybern. 3:37–46 (1974).

    MathSciNet  Google Scholar 

  24. U. Thole, H.-J. Zimmermann and P. Zysno: On the suitability of minimum and product operators for the intersection of fuzzy sets, Fuzzy Sets and Systems 2: 167–180 (1979).

    Article  MATH  Google Scholar 

  25. J.L. Verdegay, A dual approach to solve the fuzzy linear programming problem, Fuzzy Sets and Systems 14: 131–141 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Werners, Interaktive Entscheidungsunterstützung durch ein flexibles mathematisches Programmierungssystem, München 1984.

    Google Scholar 

  27. L.A. Zadeh, On fuzzy algorithms, Memo ERL-M325, Univ. of California, Berkeley, 1972.

    Google Scholar 

  28. L.A. Zadeh, K.S. Fu, K. Tanaka, and M. Simura (Eds.), Fuzzy Sets and their Applications to Cognitive and Decision Processes, New York, 1975.

    Google Scholar 

  29. W.I. Zangwill, Nonlinear Programming, Prentice-Hall, 1969.

    Google Scholar 

  30. H.-J. Zimmermann, Description and optimization of fuzzy systems, Internat. J. Gen. Systems 2:209–215 (1976).

    Article  MATH  Google Scholar 

  31. H.-J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems 1:45–55 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. H.-J. Zimmermann and P. Zysno, Latent connectives in human decision making, Fuzzy Sets and Systems:37–51 (1980).

    Google Scholar 

  33. H.-J. Zimmermann and P. Zysno, Decisions and evaluations by hierarchical aggregation of information, Fuzzy Sets and Systems 10:243–266 (1983).

    Article  MATH  Google Scholar 

  34. H.-J. Zimmermann, L.A. Zadeh, and B.R. Gaines (Eds.) Fuzzy Sets and Decision Analysis, New York, 1984.

    Google Scholar 

  35. H.-J. Zimmermann: Fuzzy Set Theory — and its Applications, Kluwer Nijhoff Publ., Boston, Dordrecht, Lancaster, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Zimmermann, HJ. (1986). Fuzzy Set Theory and Mathematical Programming. In: Jones, A., Kaufmann, A., Zimmermann, HJ. (eds) Fuzzy Sets Theory and Applications. NATO ASI Series, vol 177. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4682-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4682-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8581-6

  • Online ISBN: 978-94-009-4682-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics