Skip to main content

On Reconciling Optical and Acoustical Bubble Spectra in the Mixed Layer

  • Chapter

Part of the book series: Oceanographic Sciences Library ((OCSL,volume 2))

Abstract

Acoustically estimated size spectra of bubbles in the upper 15m of the oceanic mixed layer increase logarithmically as diameter decreases, at least to 30 µm (8µm in tap water);numbers fall off slowly with depth. Optically determined estimates, in contrast, show a strong peak above 80 µm; numbers fall off rapidly with depth. Existing theory is insufficiently developed to exclude either of these interpretations. Re-examination of the acoustical and optical responses of small bubbles suggests that classical acoustical theory overestimates small bubble numbers by as much as an order of magnitude, while the optical devices employed are 1000 times less sensitive to small bubbles than they might be.

But these corrections do not bring agreement. The tentative conclusion is that optical and acoustical techniques count fundamentally different objects. Optical methods detect buoyant, specular objects and probably miss the smaller bubbles; acoustical methods detect anything that contains gas, including neutrally buoyant non-specular bubble ‘ghosts’. There is great need for intercomparison studies employing several detection techniques simultaneously.

A new optical method for sizing small bubbles provides 1-μm resolution between 2 and 24μm diameter. (These limits are not absolute, but simply represent those explored in this paper). The technique requires only descriptive estimates of the colour of light scattered at several angles, say, 25, 35, and 45 degrees.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and I. A. Stegun, 1972. Handbook of Mathematical Functions. (Dover, NY).

    Google Scholar 

  • Avetisyan, I. A., 1976: Effect of polymer additives on the acoustic properties of a liquid containing gas bubbles. Sov. Phys. Acoust. 23, 285–288.

    Google Scholar 

  • Baylor, E. R. and W. H. Sutcliffe Jr., 1963: Dissolved organic matter in seawater as a source of particulate food.Limnol. Oceanogr. 8, 369–371.

    Google Scholar 

  • Blanchard, D. C. and A. H. Woodcock, 1957: Bubble formation and modification in the sea and its meteorological significance. Tellus 9, 145–158.

    Article  Google Scholar 

  • Bouma, P. J., 1971: Physical Aspects of Color. (StMartin’s Press, NY).2nd ed.

    Google Scholar 

  • Boyer, C.B., 1959: The Rainbow: From Myth to Mathematics. (Thos. Yoseloff).

    Google Scholar 

  • Cipriano, R. J. and D. C. Blanchard, 1981: Bubble and aerosol spectra produced by a laboratory ‘breaking wave’.J. Geophys. Res. 86, 8085–8092.

    Article  Google Scholar 

  • Committee on Colorimetry of the Optical Society of America, 1963: The Science of Color. (Opt. Soc. Am., Washington DC), 385 pp.

    Google Scholar 

  • Dave. J. V., 1969: Scattering of electromagnetic radiation by a large absorbing sphere. IBMJ. Res. Dev. 13, 302–313.

    Article  Google Scholar 

  • Davies, J. T. and K. E. Rideal, 1961: Interfacial Phenomena. (Academic Press, NY)

    Google Scholar 

  • Davis, G. E., 1955: Scattering of light by an air bubble in water. J. Opt. Soc. Am. 45, 572–581.

    Article  Google Scholar 

  • Dragcevic, D. and V. Pravdic: 1981. Properties of the seawater-air interface. 2. Rates of surface-film formation under steady-state conditions. Limnol. Oceanogr. 26, 492–499.

    Article  Google Scholar 

  • Dragcevic, D., M. Vukovic, D. Cukman and V. Pravdik: 1979. Properties of the seawater-air interface. Dynamic-surface-tension studies. Limnol. Oceanogr. 24, 1022–1030.

    Article  Google Scholar 

  • Fink, D. G., D. Christiansen (eds.), 1982: Electronic Engineers’ Handbook. (McGraw-Hill, NY)

    Google Scholar 

  • Fox, F. E. and K. F. Herzfeld, 1954: Gas bubbles with organic skin as cavitation nuclei.J. A const. Soc. Am. 26, 984–989.

    Article  Google Scholar 

  • Gavrilov, L. R., 1969: On the size distribution of gas bubbles in water. Sov. Phys. Acoustics 15, 22–24.

    Google Scholar 

  • Glazman, R., 1983: Effects of adsorbed films on gas-bubble radial oscillations. J.Acoust. Soc. Am. 74, 980–986.

    Article  Google Scholar 

  • Glotov, V. P., P. A. Kolobaev and G. G. Neuimin, 1962: Investigation of the scattering of sound by bubbles generated by an artifical wind in seawater and the statistical distribution of bubble sizes. Sov. Phys. Acoustics 7, 341–345.

    Google Scholar 

  • Goodrich, F. C., 1981: The theory of capillary excess viscosities.Roy. Soc. London Proc. A 374, 341–370.

    Article  Google Scholar 

  • Goodrich, F. C. and L. H. Allen, 1972: The theory of absolute surface-shear viscosity. V. The effect of finite ring thickness. J.Colloid Interface Sci. 40, 329–336.

    Article  Google Scholar 

  • Greenler, R., 1980: Rainbows, halos, andglories. (Cambridge U.Press).

    Google Scholar 

  • Hardy, A. C., 1936: Handbook of Colorimetry. (Technology Press, Cambridge, MA). 87 pp.

    Google Scholar 

  • Johnson, B. D., and R. C. Cooke, 1976: Nonliving organic particle formation from bubble dissolution. Limnol, Oceanogr. 21, 444–446.

    Article  Google Scholar 

  • Johnson, B.D. and R.C. Cooke, 1980: Organic particle and aggregate formation resulting from the dissolution of bubbles in seawater. Limnol. Oceanogr. 25, 653–661.

    Article  Google Scholar 

  • Johnson, B. D. and R. C. Cooke, 1981: The generation of stabilized microbubbles in seawater. Science 213, 209–211.

    Article  Google Scholar 

  • Johnson, B. D. and R. C. Cooke, 1982: Bubblepopula-tions and spectra in coastal waters: A photographic approach.J. Geophys. Res. 84, 3761–3766.

    Article  Google Scholar 

  • Johnson, I. and V. K. LaMer, 1946: The determination of particle size of monodispersed systemsby the scattering of light.J. Am. Chem. Soc. 69, 1184–1192.

    Article  Google Scholar 

  • Joly, M., 1972: Rheological properties of monomolecular films. I. Basic concepts and experimental methods. In E. Matiejevic (ed.), Surface and Colloid Science (Wiley-Interscience, NY), vol. 5, 1–78.

    Google Scholar 

  • Joly, M., 1972: Rheological properties of monomolecular films. II. Experimental results. Theoretical interpretation. Applications. In E. Matiejevic (ed.), Surface and Colloid Science (Wiley-Interscience, NY), vol. 5, 79–194.

    Google Scholar 

  • Kerker, M., W. A. Farone and W. F. Espenscheid, 1966: Color effects hi the scattering of white light by cylinders and spheres. J. Colloid Interface Sci. 21, 459–478.

    Article  Google Scholar 

  • Kerker, M., L. H. Kauffman and W. A. Farone, 1966: Scattering of electromagnetic waves from two concentric spheres when the outer shell has a variable refractive index.J. Opt. Soc. Amer. 56, 1053–1056.

    Article  Google Scholar 

  • Kingsbury, D. L. and P. L. Marston, 1981: Mie scattering near the critical angle of bubbles in water. J. Opt. Soc. Am. 71, 358–361.

    Article  Google Scholar 

  • Kingsbury, D. L. and P. L. Marston, 1981: Scattering by bubbles in glass: Mie theory and physical-optics approximation. Appl. Opt. 29, 2348–2350.

    Article  Google Scholar 

  • Kolovayev, D. A., 1976: Investigation of the concentration and statistical size distribution of wind-produced bubbles in the near-surface ocean. Oceanologia USSR Eng. Transl. 15, 659–661.

    Google Scholar 

  • LaMer, V. K., E. C. Y. Inn and I. B. Wilson, 1950: The methods of forming, determining, and measuring the size and concentration of liquid aerosols in the size range 0.01 to 0.25 microns diameter.J. Coll. Sci. 5, 471–496.

    Article  Google Scholar 

  • Land, E.H., 1959: Colorvision and the natural imagel; II.Proc. Nat. Acad. Sci 45, 115–129; 630-645.

    Article  Google Scholar 

  • Land, E. H., 1959: Experiments in color vision. Sci. Am. 200(5), 84–99.

    Article  Google Scholar 

  • Land. E. H., 1983: Recent advances in retinex theory and some implications for cortical computations: Colorvision and the natural image.Proc. Nat. Acad. Sci. 80, 5163–5169.

    Article  Google Scholar 

  • Lentz, W. J., 1973: A new method of computing spherical Bessel functions of complex argument with tables. ECOM 5509 AD 767223.

    Google Scholar 

  • Levich, V. G., 1962: Physicochemical Hydrodynamics. (Prentice-Hall, Englewood Cliffs, NJ)

    Google Scholar 

  • Levich, V. G. and V. S. Krylov, 1969: Surface-tensiondriven phenomena. Ann. Rev. Fluid Mech. 1, 293–316.

    Article  Google Scholar 

  • Lieberman, L., 1957: Air bubbles in water. J. Appl. Phys. 28, 205–211.

    Article  Google Scholar 

  • Lucassen, J. and E. H. Lucassen-Reynders, 1967: Wave damping and Gibbs elasticity for non-ideal surface behavior.J. Colloid Interface Sci. 25, 496–502.

    Article  Google Scholar 

  • Lucassen-Reynders, E. H., 1973: Interaction in mixed monolayers. III. Effect on dynamic surface properties. J. Colloid Interface Sci. 42, 573–580.

    Article  Google Scholar 

  • MacIntyre, F., Struthwulf, M and D. C. Blanchard, 1983: Color effects in light scattered from small air bubbles in water.J. Opt. Soc. Amer. (in preparation).

    Google Scholar 

  • Marston, P. L. and D. L. Kingsbury, 1981: Scattering by a bubble in water near the critical angle: interference effects.J. Opt. Soc. Am. 71, 192–196.

    Article  Google Scholar 

  • Marston, P. L., D. S. Langley and D. L. Kingsbury, 1982: Light scattering by bubbles in liquids: Mie theory, physical-optics approximations, and experiments.Appl. Sci. Res. 38, 373–383.

    Article  Google Scholar 

  • Matijevic, E., M. Kerker and E. F. Schulz, 1960: Light scattering of coated aerosols. Farad. Soc. Disc. 1960: 178–184.

    Google Scholar 

  • Medwin, H., 1970: In-situ acoustic measurements of bubble populations in coastal ocean waters. J. Geo-phys. Res. 75, 599–611.

    Article  Google Scholar 

  • Medwin, H., 1977: Counting bubbles acoustically: a review. Ultrasonics 15, 7–13.

    Article  Google Scholar 

  • Medwin, H., 1977: In-situ acoustic measurements of microbubbles at sea.J. Geophys. Res. 82, 971–976.

    Article  Google Scholar 

  • Merrill, J. T. and C. A. Mattocks, 1981: Ambient bubble-size measurements using an electro-optical instrument. (Unpublishedpaper).

    Google Scholar 

  • Minnaert, M., 1959. Light and colour in the open air. (G. Bell & Sons).

    Google Scholar 

  • Mulhearn, P. J., 1981: Distribution of microbubbles in coastal waters.J. Geophys. Res. 86, 6429–6434.

    Article  Google Scholar 

  • Olson, S., 1984: The sage of software. Science 84, 5,74–80.

    Google Scholar 

  • Rusanov, A.I. and V. V. Krotov, 1979: Gibbs elasticity of liquid films, threads andfoams.Prog. Surf. Membr. Sci. 13, 415–524.

    Google Scholar 

  • Scriven, L. E., 1960: Dynamics of a fluid interface. Chem. Eng. Sci. 12, 98–108.

    Article  Google Scholar 

  • Turner, W. R., 1961: Microbubble persistence in fresh water.J. Acoust. Soc. Am. 33, 1223–1233.

    Article  Google Scholar 

  • Van de Hülst, H. C., 1957: Light Scattering in Small Particles. (Wiley-Interscience, NY)

    Google Scholar 

  • Van Vleet, E. S. and P. M. Williams, 1983: Surface-potential and film-pressure measurements in sea-water systems. Limnol. Oceanogr. 28, 401–414.

    Article  Google Scholar 

  • Weiskopf, V., 1968: Light and Color. (Freeman, San Francisco).

    Google Scholar 

  • Wiscombe, W. J., 1979: Mie scattering calculations: Advances in technique and fast, vector-speed computer codes. NCAR/TN-140+STR.

    Google Scholar 

  • Wiscombe, W. J., 1980: Improved Mie scattering algorithms. Appl. Optics 19, 1505–1509.

    Article  Google Scholar 

  • Wu, J., 1981: Bubble populations and spectra in nearsurface ocean: Summary and review of field measurements. J. Geophys. Res. 86, 457–464.

    Article  Google Scholar 

  • Wyszecki, G. and W. S. Stiles, 1967: Color Science. (Wiley-Interscience, NY)

    Google Scholar 

  • Yount, D. E., 1979: Skins of varying permeability: A stabilization mechanism for gas-cavitation nuclei. J. Acoust. Soc. Am. 65, 1429–1439.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Magintyre, F. (1986). On Reconciling Optical and Acoustical Bubble Spectra in the Mixed Layer. In: Monahan, E.C., Niocaill, G.M. (eds) Oceanic Whitecaps. Oceanographic Sciences Library, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4668-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4668-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8575-5

  • Online ISBN: 978-94-009-4668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics