Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 176))

Abstract

Ab initio configuration interaction (CI) calculations are reported for different electronic configurations of the two model iront II) porphyrin complexes, the four-coordinate FeP molecule and its dioxygen complex FePO2, in order to assign the ground state configurations. For FeP (in an intermediate spin state S=l) the calculations predict a 3A2g ground state configuration. For FePO2 an analysis of the results suggests a singlet ground state of Fe(II)-O2 structure having some Fe(III) (d5)-O2 character. Several low-lying triplet and singlet states are also found for the FePO2 system. The electron deformation density maps computed from the CI wavefunctions for the 3A2g and 3Eg states of the FeP system are discussed, in connection with the grouna state assignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Gouterman, The porphyrins, Vol.3, Academic Press, New-York, 1978

    Google Scholar 

  2. G.H. Loew, Iron Porphyrlns, Part I, A.B.P. Lever and H.B. Gray eds., Addison — Wesley, Reading, Mass., 1983

    Google Scholar 

  3. L. Pauling and C.D. Coryell, Proc. Natl. Acad. Sci. U.S.A., 22, 210 (1936) L. Pauling, Hemoglobin, Butterworth, London, 1949, p.57

    Article  CAS  Google Scholar 

  4. G.B. Jameson, G.A. Rodley, W.T. Robinson, R.R. Gagne, C.A. Reed and J.P. Collman, Inorg. Chem., 17, 850 (1978)

    Article  CAS  Google Scholar 

  5. G.B. Jameson, F.S. Molinaro, J.A. Ibers, J.P. Collman, J.I. Brauman, E. Rose and K.S. Suslick, J. Amer. Chem. Soc., 102, 3224 (1980)

    Article  CAS  Google Scholar 

  6. W.A. Goddard III and B.D. Olafson, Proc.Mat1. Acad. Sci. U.S.A., 72, 2335 (1975) B.D. Olafson and W.A. Goddard III, Proc. Natl. Acad. Sci. U.S.A., 74, 1315 (1977)

    Article  CAS  Google Scholar 

  7. D.A. Case, B.H. Huynh and M. Karplus, J. Amer. Chem. Soc., 101, 4433 (1979)

    Article  CAS  Google Scholar 

  8. Z.S. Herman and G.H. Loew, J. Amer. Chem. Soc., 102, 1815 (1980)

    Article  CAS  Google Scholar 

  9. (a) A. Dedieu, M.-M. Rohmer and A. Veillard, Adv. Quantum Chem., 16, 43 (1982) (b) A. Dedieu, M.-M. Rohmer and A. Veillard, Metal-Ligand Interactions in Organic Chemistry and Biochemistry, B. Pullman and N. Goldblum eds., Reidel, Dordrecht, 1977, p.101

    Article  CAS  Google Scholar 

  10. J.E. Newton and M.B. Hall, Inorg, Chem., 23, 4627 (1984)

    Article  CAS  Google Scholar 

  11. J.J. Weiss, Nature, 202, 83 (1964) J.J. Weiss, Nature, 203, 183 (1964)

    Article  CAS  Google Scholar 

  12. J.P. Collman, J.I. Brauman, T.R. Halbert and K.S. Suslick, Proc. Natl. Acad. Sci. U.S.A., 73, 3333 (1976)

    Article  CAS  Google Scholar 

  13. K. Spartalian, G. Lang, J.P. Collman, R.R. Gagne and C.A. Reed, J. Chem. Phys., 63, 5375 (1975)

    Article  CAS  Google Scholar 

  14. M.H. Gubelmann and A.F. Williams, Structure and Bonding, 55, 1 (1983)

    Article  CAS  Google Scholar 

  15. T. Nozawa, M. Hatano, U. Nagashima, S. Obara and H. Kashiwagi, Bull. Chem. Soc. Jpn., 56, 1721 (1983)

    Article  CAS  Google Scholar 

  16. J.P. Collman, J.L. Hoard, N. Kim, G. Lang and C.A. Reed, J. Am. Chem. Soc., 97, 2676 (1975)

    Article  CAS  Google Scholar 

  17. H. Goff, G.N. La Mar and C.A. Reed, J. Amer. Chem. Soc., 99, 3641 (1977)

    Article  CAS  Google Scholar 

  18. P.D.W. Boyd, A.D. Buckingham, R.F. McMecking and S. Mitra, Inorg. Chem., 18, 3585 (1979)

    Article  CAS  Google Scholar 

  19. G. Lang, K. Spartalian, C.A. Reed and J.P. Collman, J. Chem. Phys., 69, 5424 (1978)

    Article  CAS  Google Scholar 

  20. J. Mispelter, M. Momenteau and J.M. Lhoste, J. Chem. Phys., 72, 1003 (1980)

    Article  CAS  Google Scholar 

  21. T. Kitagawa and J. Teraoka, Chem. Phys. Letters, 63, 443 (1979)

    Article  CAS  Google Scholar 

  22. M. Zerner, M. Gouterman and H. Kobayashi, Theoret.Chini. Acta, 6, 363 (1966)

    Article  CAS  Google Scholar 

  23. S.F. Sontum, D.A. Case and M. Karplus, J. Chem. Phys., 79, 2881 (1983)

    Article  CAS  Google Scholar 

  24. S. Obara and H. Kashiwagi, J. Chem. Phys., 77, 3155 (1982)

    Article  CAS  Google Scholar 

  25. M.-M. Rohmer, A. Dedieu and A. Veillard, Chem. Phys., 77, 44–9 (1983)

    Article  Google Scholar 

  26. M. Benard, A. Dedieu, J. Demuynck, M.-M. Rohmer, A. Strich, A. Veillard and R. Wiest, unpublished work.

    Google Scholar 

  27. The (15, 11, 6) basis set is made from the (14, 9, 5) basis of Wachters by adding an additional s function with an exponent of 0.2985, two p functions with exponents of 0.2308 and 0.0899 and one d diffuse function of exponent 0.1133. The (14, 9, 6) basis set is made from the (13, 7, 5) basis of Hyla-Kryspin et al by adding an additional s function with an exponent of 0.345, two p functions with exponents 0.247 and 0.08 and by replacing the last d function by two functions with exponents 0.332 and 0.106. All these exponents were chosen according to the even-tempered criterion of Raffenetti et al.

    Google Scholar 

  28. S. Huzinaga, Approximate Atomic Functions, Technical Report, University of Edmonton (1971)

    Google Scholar 

  29. S. Huzinaga, J. Chem. Phys., 42, 1293 (1965)

    Article  Google Scholar 

  30. A.J.A. Wachters, J. Chem. Phys., 52, 1033 (1970)

    Article  CAS  Google Scholar 

  31. P.J. Hay, J. Chem. Phys., 66, 4377 (1977)

    Article  CAS  Google Scholar 

  32. I. Hyla-Kryspin, J. Demuynck, A. Strich and M. Benard, J. Chem. Phys., 75, 3954 (1981)

    Article  CAS  Google Scholar 

  33. R.C. Raffenetti, R.D. Bardo and K. Ruedenberg in “Energy structure and reactivity”, D.W. Smith and W.B. McRac eds., Wiley, New-York, 1973, p.164

    Google Scholar 

  34. L. Latos-Grazynski, R.J. Cheng, G.N. La Mar and A.L. Balch, J. Amer. Chem. Soc., 104, 5992 (1982)

    Article  CAS  Google Scholar 

  35. T. Watanabe, T. Ama and K. Nakamoto, J. Phys. Chem., 88, 440 (1984)

    Article  CAS  Google Scholar 

  36. W.R. Scheidt and D.K. Geiger, Inorg. Chem., 21, 1208 (1982)

    Article  CAS  Google Scholar 

  37. Of these active orbitals, 52 are unoccupied in the SCF calculations, 1 has a 3d character, 3 a 4s character, 1 a 3d, 4s character, 6 a 3d, σ* character, 2 a 4p, σ* character, 2 a 3d, π* character, 33 a π* character.

    Google Scholar 

  38. Of these 47 orbitals, 6 have an O2 character (1 being the πgb) 30 have iron 4s, 4p and 3d character, 11 have a π* character.

    Google Scholar 

  39. (a) B.R. Brooks and H.F. Schaefer, J. Chem. Phys., 70, 5092 (1979) (b) This program was adapted for the IBM computer by F. Brown and I. Shavitt

    Google Scholar 

  40. (a) J. Paldus, Theor Chem. Adv. Perspect., 2, 131 (1976) (b) I. Shavitt, Int. J. Quant. Chem. Symp., 11, 131 (1977)

    CAS  Google Scholar 

  41. M. Benard, Angew. Chem. Suppl., 1845 (1982)

    Google Scholar 

  42. P. Coppens and L. Li, J. Chem. Phys., 81, 1983 (1984)

    Article  CAS  Google Scholar 

  43. J. Mispelter, M. Momenteau and J.M. Lhoste, Chem. Phys. Letters, 57, 405 (1978)

    Article  CAS  Google Scholar 

  44. K. Ohno, Horizons of Quantum Chemistry, K. Fukui and B. Pullman eds., Reidel, Dordrecht, 1979, p.254

    Google Scholar 

  45. S. Kitagawa, I. Morishima, T. Yonezawa and N. Sato, Inorg. Chem., 18, 1345 (1979)

    Article  CAS  Google Scholar 

  46. M. Cerdonio, A. Congiu-Castellano, F. Mogno, B. Pispisa, G.L. Romani and S. Vitale, Proc. Natl. Acad. Sci. U.S.A., 74, 398 (1977) M. Cerdonio, A. Congiu-Castellano, L. Celabrese, S. Morante, B. Pispisa and S. Vitale, Proc. Natl. Acad. Sci. U.S.A., 75, 4916 (1978)

    Article  CAS  Google Scholar 

  47. L. Pauling, Proc. Natl. Acad. Sci. U.S.A., 74, 2612 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Rohmer, MM. (1986). Electronic Structure of Metallloporphyrins. Ab Initio CI Calculations. In: Veillard, A. (eds) Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry. NATO ASI Series, vol 176. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4656-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4656-9_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2237-9

  • Online ISBN: 978-94-009-4656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics