Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 176))

Abstract

SCF and CI calculations are reported for two elementary-reactions involved in CO reductive hydrogenation catalytic processes, the nucleophilic addition of a hydride to the carbonyl ligand and the carbonyl insertion into the metal hydride bond. The nucleophilic addition is found to be exothermic and with no activation barrier. The CO insertion reaction is shown to be an hydride migration toward the carbonyl ligand and is characterized by a high energy barrier. The factors which control the corresponding stereochemistries and energy profiles are analyzed in connection with experimental gas phase and solution data. The importance of correlation effects is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review see for instance: a) C. Masters, Adv. Organomet. Chem., 17, 61 (1979) b) E.L. Mutterties and J. Stein, Chem. Rev. 79, 479 (1979) c) C.K. Rofer-De Poorter, Chem. Rev. 81, 447 (1981) d) W.A. Herrmann, Angew. Chem. Int. Ed. Engl. 21, 117 (1982) e) J.R. Blackborow, R.J. Daroda and G. Wilkinson, Coord. Chem, Rev., 43, 17 (1982) See also f) R. Eisenberg and D.E. Hendriksen, Adv. Catalysis, 28, 79 (1979) g) D.R. Fahey, J. Am. Chem. Soc., 103, 136 (1981)

    Article  CAS  Google Scholar 

  2. J.A. Gladysz, Adv. Organomet. Chem., 20, 1 (1982)

    Article  CAS  Google Scholar 

  3. K.R. Lane, L. Sallans and R.R. Squires, J. Am. Chem. Soc., 107, 5369 (1985)

    Article  CAS  Google Scholar 

  4. K.R. Lane, L. Sallans and R.R. Squires, submitted for publication

    Google Scholar 

  5. R.R. Squires, private communication

    Google Scholar 

  6. J. Chandrasekhar, J.G. Andrade and P.V.R. Schleyer, J. Am. Chem. Soc., 103, 5612 (1981)

    Article  CAS  Google Scholar 

  7. D.L. Grimett, J.A. Labinger, J.N. Bonfiglio, S.T. Masuo, E. Shearin and J.S. Miller, Organomet. 2, 1325 (1983)

    Article  Google Scholar 

  8. J.A. Connor, M.T. Zafarani-Moattar, J. Bickerton, N.I. El-Saied, S. Suradi, R. Carson, G. Al Takhin and H.A. Skinner, Organomet. 1, 1166 (1982)

    Article  CAS  Google Scholar 

  9. For a review, see C.P. Horwitz and D.F. Shriver, Adv. Organomet. Chem. 23, 219 (1984)

    Article  CAS  Google Scholar 

  10. G.C. Demitras and E.L. Mutterties, J. Am. Chem. Soc., 99, 2796 (1977)

    Article  CAS  Google Scholar 

  11. D.F. Shriver, ACS Symp. Ser. 152, 1 (1981)

    Article  CAS  Google Scholar 

  12. a) D.C. Cross and P.C. Ford, Inorg. Chem., 21, 1702 (1982) b) D.C. Cross and P.C. Ford, J. Am. Chem. Soc., 107, 585 (1985)

    Article  Google Scholar 

  13. M.M. Harris, J.D. Atwood, M.E. Wright and G.O. Nelson, Inorg. Chem., 21, 2117 (1982)

    Article  CAS  Google Scholar 

  14. a) C.J. Commons and B.F. Hoskins, Aust. J. Chem., 28, 1663 (1975) b) R. Colton and C.J. Commons, Aust. J. Chem., 28, 1673 (1975) c) K.G. Caulton and P. Adair, J. Organomet. Chem., 114, C11 (1976) d) J.A. Marsella and K.G. Caulton, Organomet. 1, 274 (1982)

    Article  CAS  Google Scholar 

  15. a) H.C. Aspinall and A.J. Deeming, J. Chem. Soc., Chem. Commun, 724 (1981) b) A.J. Deeming and S. Donovan-Mtunzi, Organomet., 4, 693 (1985)

    Google Scholar 

  16. P.J. Fagan, K.G. Moloy and T.J. Marks, J. Am. Chem. Soc., 103, 6959 (1981)

    Article  CAS  Google Scholar 

  17. K.G. Moloy and T.J. Marks, J. Am. Chem. Soc. 106, 7051 (1984)

    Article  CAS  Google Scholar 

  18. a) K. Noack and F. Calderazzo, J. Organomet. Chem. 10, 101 (1967) b) K. Noack, M. Ruch and F. Calderazzo, Inorg. Chem. 7, 345 (1968)

    Article  CAS  Google Scholar 

  19. T.C. Flood, J.E. Jensen and J.A. Statler, J. Am. Chem. Soc., 103, 4410 (1981)

    Article  CAS  Google Scholar 

  20. F. Ozawa and A. Yamamoto, Chem. Lett., 289 (1981)

    Google Scholar 

  21. For other reaction pathways see a) R.W. Glyde and R.J. Mawby, Inorg. Chim. Acta, 5, 317 (1971) b) T.C. Flood and K.D. Campbell, J. Am. Chem. Soc., 106, 2853 (1984)

    Article  CAS  Google Scholar 

  22. H. Berke and R. Hoffmann, J. Am. Chem. Soc., 100, 7224 (1978)

    Article  CAS  Google Scholar 

  23. S. Sakaki, K. Kitaura, K. Morokuma and K. Ohkubo, J. Am. Chem. Soc., 105, 2280 (1983)

    Article  CAS  Google Scholar 

  24. M. Bénard, A. Dedieu, J. Demuynck, M.M. Rohmer, A. Strich, A. Veillard and R. Wiest, ASTERIX, a system of programs, unpublished work

    Google Scholar 

  25. I. Hyla-Kryspin, J. Demuynck, A. Strich and M. Bénard, J. Chem. Phys., 75, 3954 (1981)

    Article  CAS  Google Scholar 

  26. S. Huzinaga, Approximate Atomic Functions, Technical Report, University of Alberta (1971)

    Google Scholar 

  27. S. Huzinaga, J. Chem. Phys., 42, 1293 (1965)

    Article  Google Scholar 

  28. a) S.F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970) b) W. Kolos, Theoret. Chim. Acta 51, 219 (1979)

    Article  CAS  Google Scholar 

  29. The CI program developped originally by Brooks and Schaefer and adapted for the IBM computer by F. Brown and I. Shavitt was interfaced for use in conjunction with the ASTERIX system of programs for the Univac 1110 by J. Demuynck and R. Wiest and for the CRAY-1 computer by C. Daniel and R. Wiest.

    Google Scholar 

  30. S. Nakamura and A. Dedieu, Theoret. Chim. Acta 61, 587 (1982)

    CAS  Google Scholar 

  31. C.P. Casey, S.M. Neumann, M.A. Andrews and D.R. McAlister, Pure Appl. Chem. 52, 625 (1980)

    Article  CAS  Google Scholar 

  32. W.K. Wong, W. Tarn, C.E. Strouse and J.A. Gladysz. J. Chem. Soc, Chem. Commun, 531 (1979)

    Google Scholar 

  33. B.B. Wayland, B.A. Woods and R. Pierce, J. Amer. Chem. Soc., 104, 302 (1982)

    Article  CAS  Google Scholar 

  34. G. Smith, D.J. Cole-Hamilton, M. Thornton-Pett and M.B. Hurthouse, J. Chem. Soc., Dalton Trans. 2501 (1983)

    Google Scholar 

  35. H. Berke, G. Huttner, O. Scheidsteger and G. Weiler, Angew. Chem. Int. Ed. Engl. 23, 735 (1984)

    Article  Google Scholar 

  36. A. Dedieu and S. Nakamura, Nouv. J. Chimie 8, 317 (1984)

    CAS  Google Scholar 

  37. M. Bénard, Inorg. Chem. 18, 2782 (1979)

    Article  Google Scholar 

  38. One should not compare the results of the Mulliken population analysis for ‘the [Cp Fe(CO)]2 (CO)2 system with those of the Mn2(CO)5(PH3)4 and Mn(CO)5. BH since they have been computed with different basis sets: (11, 7, 5/8, 4/ 4)’ [4, 3, 2/3, 2/2] for the diiron sytem and (13, 8, 6/9, 5/6) [5, 3, 3/3, 2/3] for the manganese systems.

    Google Scholar 

  39. R. Hoffmann, Angew. Chem. Int. Ed. Engl. 21, 711 (1982)

    Article  Google Scholar 

  40. M. Bénard, A. Dedieu and S. Nakamura, Nouv. J. Chimie, 8, 149 (1984)

    Google Scholar 

  41. B.J. Morris-Sherwood, C.B. Powell and M.B. Hall, J.Am. Chem. Soc., 106, 5079 (1984)

    Article  CAS  Google Scholar 

  42. In order to account for the size inconsistency error 43 calculations were carried out with an hydride located at 50 A’ of the attacked carbon atom for the reactant side Fe(CO)2 + H

    Google Scholar 

  43. J. A. Pople, J.S. Binkley and R. Seeger, Int. J. Quant. Chem. Symp, 10, 1 (1976)

    Article  CAS  Google Scholar 

  44. S.R. Langhoff, S.T. Elbert and E.R. Davidson, Intern. J. Quantum Chemistry, 7, 999 (1973)

    Article  CAS  Google Scholar 

  45. S. Nakamura and A. Dedieu, Chem. Phys. Letters, 111, 243 (1984)

    Google Scholar 

  46. E.A. McNeill and F.R. Scholer, J. Am. Chem. Soc., 99, 6243 (1977)

    Article  CAS  Google Scholar 

  47. H. Berke and R. Hoffmann, J. Am. Chem. Soc., 100, 7224 (1978)

    Article  CAS  Google Scholar 

  48. a) K. Morokuma, private communication b) N. Koga and K. Morokuma, this volume

    Google Scholar 

  49. G.S. Hammond, J. Am. Chem. Soc., 77, 334 (1955)

    Article  CAS  Google Scholar 

  50. S. Sakaki and A. Dedieu, to be published

    Google Scholar 

  51. S. Nakamura, Thè se de Doctorat d’Etat, Strasbourg 1984

    Google Scholar 

  52. D. Moncrieff, P.C. Ford, I.H. Hillier and V. Saunders, J. Chem. Soc., Chem. Commun, 1108 (1983)

    Google Scholar 

  53. See for instance I. Shavitt in ‘Advanced theories and computational approaches to the electronic structure of molecules’ NATO ASI, Vol 133, page 185, D. Reidel, Dordrecht (1985)

    Google Scholar 

  54. NOTE ADDED IN PROOF: the activating role, in the nucleophilic addition, of an empty d metal orbital pointing toward the attacked carbonyl ligand is best exemplified by the results of a comparative calculation carried out for the model reactions H + M(CO)4 + M(CO)3(CHO), M being either iron or nickel55. For the M(CO)4 system a C3v geometry having the z axis as principal axis was chosen in order to single out the dz2 orbital which is therefore doubly occupied in Ni(CO)4 and empty in Fe(CO)4. Same bond lengths and bond angles were used in both reactions. The computed SCF exothermicity is 56.2 kcal/mol for the H + Ni(CO)4 reaction and 61.0 kcal/mol for the H + Fe(CO)4 reaction. The difference, 4.8 kcal/mol, therefore reflects the extra stabilization brought up by the in-phase mixing of the empty dz 2 orbital into the π*CO + SH-bonding combination

    Google Scholar 

  55. The calculation for the Ni (CO)4 reaction was suggested to us by Prof. M. B. Hall.

    Google Scholar 

  56. There is some experimental evidence that Mn(I) complexes involve a rather important degree of π back-bonding57 whereas Pt(II) and especially Pd(II) are characterized by a weak tendency to π back-donate 58.

    Google Scholar 

  57. R. Gross and W. Kaim, Angew. Chem. Int. Ed.Engl., 23, 614 (1984)

    Article  Google Scholar 

  58. F. Calderazzo and D.B. Dell’Amico, Inorg. Chem., 20, 1310 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Dedieu, A., Nakamura, S. (1986). CO Activation and Reactivity in Organometallic Chemistry: Theoretical Studies. In: Veillard, A. (eds) Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry. NATO ASI Series, vol 176. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4656-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4656-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2237-9

  • Online ISBN: 978-94-009-4656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics